




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头澄海区六校联考2024届八年级下册数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.使代数式有意义的x的取值范围是()A.x≥0 B. C.x取一切实数 D.x≥0且2.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.30° D.45°3.下列多项式中不能用公式进行因式分解的是()A.a2+a+ B.a2+b2-2ab C. D.4.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A. B. C. D.5.关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为()A.3 B.6 C.6或9 D.3或66.下列各组数中能作为直角三角形的三边长的是()A. B. C.9,41,40 D.2,3,47.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.468.如图,在长方形纸片中,,.点是的中点,点是边上的一个动点.将沿所在直线翻折,得到.则长的最小值是()A. B. C. D.9.已知直线y=kx+b经过一、二、三象限,则直线y=bx-k-2的图象只能是()A. B. C. D.10.已知一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为A. B. C. D.11.下列计算正确的是()A.3xy2C.2a212.如图,平行四边形ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若,,则的度数是A. B. C. D.二、填空题(每题4分,共24分)13.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.14.如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.15.如果一组数据:5,,9,4的平均数为6,那么的值是_________16.不等式组的整数解有_____个.17.如图,中,,,的垂直平分线分别交、于、,若,则________.18.如图,中,,,点为边上一动点(不与点、重合),当为等腰三角形时,的度数是________.三、解答题(共78分)19.(8分)如图,一次函数的图象与轴交于点,与轴交于点,过的中点的直线交轴于点.(1)求,两点的坐标及直线的函数表达式;(2)若坐标平面内的点,能使以点,,,为顶点的四边形为平行四边形,请直接写出满足条件的点的坐标.20.(8分)如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.21.(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<70a0.2870≤x<80160.3280≤x<90100.2090≤x≤100cb合计501.00(1)表中的a=______,b=______,c=______;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.22.(10分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/量)30租金/(元/辆)400280(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.(2)请给出最节省费用的租车方案.23.(10分)如图,直线与直线相交于点A(3,1),与x轴交于点B.(1)求k的值;(2)不等式的解集是________________.24.(10分)党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).25.(12分)如图,在矩形中,、相交于点,过点作的平行线交的延长线于点.(1)求证:.(2)过点作于点,并延长交于点,连接.若,,求四边形的周长.26.如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.(1)四边形ADEF为__________四边形;(2)当△ABC满足条件____________时,四边形ADEF为矩形;(3)当△ABC满足条件____________时,四边形ADEF为菱形;(4)当△ABC满足条件____________时,四边形ADEF不存在.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据题意可得:当x≥0且3x﹣1≠0时,代数式有意义,解得:x≥0且.故选D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2、D【解析】
过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选D.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.3、D【解析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式进行因式分解.【详解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正确选项为D.【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.4、C【解析】
连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.【详解】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH=∴BF+DE最小值为4.故选:C.【点睛】本题主要考查正方形的性质,轴对称的性质,全等三角形的判定及性质,勾股定理,能够作出辅助线将线段转化是解题的关键.5、B【解析】
先把x=1代入方程x2-mx+2m=0求出m得到原方程为x2-9x+18=0,利用因式分解法解方程得到x1=1,x2=6,然后根据等腰三角形三边的关系和等腰三角形的确定等腰△ABC的腰和底边长.【详解】解:把x=1代入方程x2-mx+2m=0得9-1m+2m=0,解得m=9,则原方程化为x2-9x+18=0,(x-1)(x-6)=0,所以x1=1,x2=6,所以等腰△ABC的腰长为6,底边长为1.故选:B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.6、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、92+162≠252,故不是直角三角形,故不符合题意;B、()2+()2≠()2,故不是直角三角形,故不符合题意;C、92+402=412,故是直角三角形,故符合题意;D、22+32≠42,故不是直角三角形,故不符合题意.故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、C【解析】
∵四边形ABCD是平行四边形,∴AB=CD=5.∵△OCD的周长为23,∴OD+OC=23﹣5=18.∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36.故选C.8、A【解析】
以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,根据折叠的性质可知GE=1,在Rt△BCE中利用勾股定理可求出CE的长度,用CE-GE即可求出结论.【详解】解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示.根据折叠可知:,在Rt△BCE中,,,∴GC的最小值=CE-GE=,故选:A.【点睛】本题考查了翻折变换、矩形的性质以及勾股定理,利用作圆,找出A′C取最小值时点A′的位置是解题的关键.9、C【解析】
由直线y=kx+b经过一、二、三象限可得出k>0,b>0,进而可得出−k−2<0,再利用一次函数图象与系数的关系可得出直线y=bx−k−2的图象经过第一、三、四象限.【详解】解:∵直线y=kx+b经过一、二、三象限,∴k>0,b>0,∴−k−2<0,∴直线y=bx−k−2的图象经过第一、三、四象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k>0,b>0时,y=kx+b的图象在一、二、三象限;k>0,b<0时,y=kx+b的图象在一、三、四象限”是解题的关键.10、B【解析】试题分析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=-3k.将b=-3k代入k(x-4)-1b>0,得k(x-4)-1×(-3k)>0,去括号得:kx-4k+6k>0,移项、合并同类项得:kx>-1k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<-1.故选B.考点:一次函数与一元一次不等式.11、D【解析】
根据分式的计算法则,依次计算各选项后即可进行判断.【详解】A选项:3xyB选项:1a+bC选项:2aD选项:a2故选:D.【点睛】查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.12、A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(每题4分,共24分)13、2.10【解析】由题意可知,将木块展开,
相当于是AB+2个正方形的宽,
∴长为2+0.2×2=2.4米;宽为1米.
于是最短路径为:故答案是:2.1.14、254【解析】
(1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;(2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.【详解】解:(1)如图1过G作GH⊥AD在Rt△GHE中,GE=BG=1,GH=8所以,EH==6,设AF=x,则则∴解得:x=3∴AF=3,BF=EF=5故△EFG的面积为:×5×1=25;(2)如图2,过F作FK⊥BG于K∵四边形ABCD是矩形∴,∴四边形BGEF是平行四边形由对称性知,BG=EG∴四边形BGEF是菱形∴BG=BF=1,AB=8,AF=6∴KG=4∴FG=.【点睛】本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.15、6【解析】
根据平均数的定义,即可求解.【详解】根据题意,得解得故答案为6.【点睛】此题主要考查平均数的求解,熟练掌握,即可解题.16、3【解析】
首先解每个不等式,把解集在数轴上表示出来即可得到不等式组的解集,然后确定解集中的整数,便可得到整数解得个数.【详解】,解不等式得:,解不等式得:,不等式的解集是,则整数解是:,共个整数解.故答案为:.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.17、【解析】
先根据垂直平分线的性质,判定AM=BM,再求出∠B=30°,∠CAM=90°,根据直角三角形中30度的角对的直角边是斜边的一半,得出BM=AM=CA,即CM=2BM,进而可求出BC的长.【详解】如图所示,连接AM,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∵MN⊥AB,∴BM=2MN=2,∵MN是AB的垂直平分线,∴BM=AM=2,∴∠BAM=∠B=30°,∴∠MAC=90°,∴CM=2AM=4,∴BC=2+4=1.故答案为1.【点睛】此题主要考查了等腰三角形的性质,含30°角的直角三角形的性质,以及线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.18、或【解析】
根据AB=AC,∠A=40°,得到∠ABC=∠C=70°,然后分当CD=CB时和当BD=BC时两种情况求得∠ABD的度数即可.【详解】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,当CD=CB时,∠CBD=∠CDB=(180°-70°)÷2=55°,此时∠ABD=70°-55°=15°;当BD=BC时,∠BDC=∠BCD=70°,∴∠DBC=180°-70°-70°=40°,∴∠ABD=70°-40°=30°,故答案为:15°或30°.【点睛】本题考查了等腰三角形的性质,解题的关键是能够分类讨论,难度不是很大,是常考的题目之一.三、解答题(共78分)19、(1),,;(2)点的坐标为或或.【解析】
(1)先根据一次函数求出A,B坐标,然后得到中点D的坐标,利用待定系数法求出直线CD的解析式即可求解;(2)根据题意分3种情况,利用坐标平移的性质即可求解.【详解】解:(1)一次函数,令,则;令,则,∴,,∵是的中点,∴,设直线的函数表达式为,则解得∴直线的函数表达式为.(2)①若四边形BCDF是平行四边形,则DF∥CB,DF=CB,而点C向右平移6个单位长度得到点B,∴点D向右平移6个单位长度得到点F(8,2);②若四边形BCFD是平行四边形,则DF∥CB,DF=CB,而点B向左平移6个单位长度得到点C,∴点D向左平移6个单位长度得到点F(-4,2);③若四边形BDCF是平行四边形,则BF∥DC,BF=DC,而点D向左平移4个单位长度、向下平移2个单位长度得到点C,∴点B向左平移4个单位长度、向下平移2个单位长度得到点F(0,-2);综上,点的坐标为或或.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用及平行四边形的性质.20、20°【解析】试题分析:首先根据三角形内角和定理求出∠BAC的度数,然后根据角平分线的性质得出∠EAC的度数,然后根据Rt△ADC的内角和定理求出∠DAC的度数,从而得出∠DAE的度数.试题解析:∵∠B=36°,∠C=76°∴∠BAC=68°∵AE平分∠BAC∴∠EAC=68°÷2=34°∵AD是高线∴∠DAC=90°-76°=14°∴∠DAE=∠EAC-∠DAC=34°-14°=20°.考点:角度的计算21、(1)14;0.08;4;(2)详见解析;(3)80.【解析】
(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【详解】解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;故答案为:14;0.08;4;(2)频数分布直方图、折线图如图,(3)根据题意得:1000×(4÷50)=80(人),则你估计该校进入决赛的学生大约有80人.【点睛】此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.22、(1)6,6,6;(2)租乙种客车2辆,甲种客车4辆.【解析】
(1)根据师生总人数240人,以及所需租车数=人数÷载客量算出载客量最大的车所需辆数即可得租车总数最小值,再结合每辆车至少有一名老师即可租车数量最大值;(2)设租乙种客车x辆,根据师生总数240人以及总费用2300元即可列出关于x的不等式组,从而得出x范围,之后进一步求出租车方案即可.【详解】(1)∵(辆)……15(人),∴为保证师生都有车坐,汽车总数不能小于6辆;又∵每辆车上至少有名教师,共有6名教师,∴租车总数不可大于6,故答案为:6,6,6;(2)设租乙种客车x辆,则:,且,∴,∵是整数,∴,或,设租车费用为y元,则,∴当时,y最小,且,故租乙种客车2辆,甲种客车4辆时,所需费用最低.【点睛】本题主要考查了一元一次不等式组在方案问题中的实际运用,熟练掌握相关概念是解题关键.23、(1);(2)x>3.【解析】
(1)根据直线y=kx+2与直线相交于点A(3,1),与x轴交于点B可以求得k的值和点B的坐标;
(2)根据函数图象可以直接写出不等式kx+2<的解集.【详解】(1),解得:(2),解得:x>3【点睛】本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.24、(1)(2)【解析】
(1)根据概率公式计算即可;(2)先画树状图得出所有可能的结果,然后根据概率公式计算即可.【详解】(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)画树状图:共有12种情况,其中符合题意的有8种,∴【点睛】简单事件的概率.25、(1)证明见解析;(2).【解析】
(1)根据两组对边分别平行且的四边形是平行四边形判断出四边形BEAD是平行四边形,再根据平行四边形对边相等和矩形对边相等即可得出结论;(2)根据矩形的对角线相等且互相平分及直角三角形斜边上的中线等于斜边的一半可得OB=OC=OG,利用勾股定理求出BC,CO的长.证明BF为△CEG的中位线,再由三角形中位线定理可得EG=2BF,最后根据四边形的周长公式列式计算即可得解.【详解】(1)∵AE∥DB,AD∥EB,∴四边形BEAD是平行四边形,∴BE=DA.∵四边形ABCD是矩形,∴BC=AD,∴BE=BC;(2)∵四边形ABCD是矩形,∴OA=OB=OCAC.∵AE∥DB,CF⊥BO,∴CG⊥AE,∴GO为Rt△CGA斜边的中线,∴GOAC=OB,∴BO+OG=BD.∵CF=3,BF=1,∴BE=BC=.设CO=x,则FO=BO-BF=x-1.在Rt△CFO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动者健康关怀实践3篇
- 合同未到期辞退赔偿标准3篇
- 南宁市青秀区发展和改革局招聘笔试真题2024
- 2024年呼伦贝尔牙克石市贵涛太阳能有限责任公司招聘考试真题
- 煤炭市场的绿色营销策略考核试卷
- 公司出纳会计工作总结(3篇)
- 电梯轿厢内部照明系统的智能控制技术与应用案例分析考核试卷
- 矿产资源勘查规范与标准考核试卷
- 临时工劳动合同书(16篇)
- 糖果成本控制与盈利分析考核试卷
- 内蒙古鄂尔多斯市2020年中考英语试题(解析版)
- Vue.js前端开发实战(第2版) 课件 第2章 Vue.js开发基础
- 异面直线 高一下学期数学湘教版(2019)必修第二册
- 笔墨时空-解读中国书法文化基因智慧树知到期末考试答案2024年
- 计算机网络故障的诊断与解决方法
- GLB-2防孤岛保护装置试验报告
- 的沟通技巧评估表
- 职场人健康状况调查报告
- 卵巢囊肿诊治中国专家共识解读
- 两癌筛查的知识讲座
- 仪器共享平台方案
评论
0/150
提交评论