2024年南阳市重点中学数学八年级下册期末复习检测模拟试题含解析_第1页
2024年南阳市重点中学数学八年级下册期末复习检测模拟试题含解析_第2页
2024年南阳市重点中学数学八年级下册期末复习检测模拟试题含解析_第3页
2024年南阳市重点中学数学八年级下册期末复习检测模拟试题含解析_第4页
2024年南阳市重点中学数学八年级下册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年南阳市重点中学数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,直线y=x-与矩形ABCD的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.2.如图,的对角线AC,BD相交于点O,是AB中点,且AE+EO=4,则的周长为A.20 B.16 C.12 D.83.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°4.下列命题中,不正确的是().A.一个四边形如果既是矩形又是菱形,那么它一定是正方形B.有一个角是直角,且有一组邻边相等的平行四边形是正方形C.有一组邻边相等的矩形是正方形D.两条对角线垂直且相等的四边形是正方形5.在矩形中,,,点是上一点,翻折,得,点落在上,则的值是()A.1 B.C. D.6.矩形、菱形和正方形的对角线都具有的性质是()A.互相平分 B.互相垂直 C.相等 D.任何一条对角线平分一组对角7.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2,下列关系正确的是()A.S甲2<S乙2 B.S甲2>S乙2 C.S甲2=S乙2 D.无法确定8.如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是()A.x>2 B.x>0 C.x>1 D.x<19.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形10.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个 B.3个 C.4个 D.5个11.如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是()A. B. C. D.12.用配方法解一元二次方程时,下列变形正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.14.函数中,自变量x的取值范围是.15.平行四边形ABCD中,∠A=80°,则∠C=°.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.17.根据图中的程序,当输入时,输出的结果______.18.化简:_____.三、解答题(共78分)19.(8分)如图①,在四边形中,,,,,点从点开始沿边向终点以每秒的速度移动,点从点开始沿边向终点以每秒的速度移动,当其中一点到达终点时运动停止,设运动时间为秒.(1)求证:当时,四边形是平行四边形;(2)当为何值时,线段平分对角线?并求出此时四边形的周长;(3)当为何值时,点恰好在的垂直平分线上?20.(8分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.21.(8分)计算:+(π﹣3)0﹣()﹣1+|1﹣|22.(10分)已知正方形ABCD中,E为对角线BD上一点,过点E作EF⊥BD交BC于点F,连接DF,G为DF的中点,连接EG,(1)如图1,求证:EG=CG;(2)将图1中的ΔBEF绕点B逆时针旋转45°,如图2,取DF的中点G,连接EG,CG.问((3)将图1中的ΔBEF绕点B逆时计旋转任意角度,如图3,取DF的中点G,连接EG,CG.问(23.(10分)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.[来根据以上信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.24.(10分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?25.(12分)已知A.B两地果园分别有苹果30吨和40吨,C.D两地的农贸市场分别需求苹果20吨和50吨。已知从A.B两地到C.D两地的运价如表:(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?26.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:型号甲乙每台每小时分拣快递件数(件)1000800每台价格(万元)53该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【详解】∵当y=0时,x-=0,解得x=1,

∴点E的坐标是(1,0),即OE=1,

∵OC=4,

∴EC=OC-OE=4-1=3,

∴点F的横坐标是4,

∴y==2,即CF=2,

∴△CEF的面积=×CE×CF=×3×2=3

故选B.【点睛】本题考查的是一次函数图象上点的坐标特点,根据直线的解析式求出点E、F的坐标是解题的关键.2、B【解析】

首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.3、B【解析】

先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.4、D【解析】试题分析:根据正方形的判定定理可得选项A正确;有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形,选项B正确;有一组邻边相等的矩形是正方形,选项C正确;两条对角线垂直平方且相等的四边形是正方形,选项D错误,故答案选D.考点:正方形的判定.5、D【解析】

设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.【详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,∴BC`=BC=5,EC`=CE=x,DE=CD−CE=3−x.在Rt△ABC`中,由勾股定理得:AC`=5−3=16,∴AC`=4,DC`=5−4=1.在Rt△DEC`中,由勾股定理得:EC`=DE+DC`,即x=(3−x)+1,解得:x=.故选D【点睛】此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算6、A【解析】

因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.【详解】解:根据平行四边形、矩形、菱形、正方形的对角线相互平分的性质,可知选A.

故选:A.【点睛】此题综合考查了平行四边形、矩形、菱形、正方形的对角线的性质,熟练掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.7、A【解析】

结合图形,成绩波动比较大的方差就大.【详解】解:从图看出:甲选手的成绩波动较小,说明它的成绩较稳定,其方差较小,所以S甲2<S乙2.故选A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、D【解析】【分析】观察函数图象得到当x<1时,函数y=x+b的图象都在y=kx+4的图象下方,所以关于x的不等式x+b<kx+4的解集为x<1.【解答】当x<1时,x+b<kx+4,即不等式x+b<kx+4的解集为x<1,故选D.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9、D【解析】

分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.10、B【解析】

根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.11、A【解析】

求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.【详解】把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,∴直线y=x,与反比例函数y=,,解得:,∴A(-3,-5)故选:A.【点睛】考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.12、A【解析】

根据完全平方公式即可进行求解.【详解】∵=0∴方程化为故选A.【点睛】此题主要考查配方法,解题的关键是熟知完全平方公式的应用.二、填空题(每题4分,共24分)13、1.【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=2.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=2+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.故答案为1.14、.【解析】

∵在实数范围内有意义,∴∴故答案为15、1【解析】试题分析:利用平行四边形的对角相等,进而求出即可.解:∵四边形ABCD是平行四边形,∴∠A=∠C=1°.故答案为:1.16、【解析】

解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.17、2【解析】

根据题意可知,该程序计算是将x代入y=−2x+1.将x=5输入即可求解.【详解】∵x=5>3,∴将x=5代入y=−2x+1,解得y=2.故答案为:2.【点睛】解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.18、【解析】

算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】8的算术平方根为.∴故答案为:.【点睛】此题考查算术平方根的定义,解题关键在于掌握其定义.三、解答题(共78分)19、(1)见解析;(2)t=3,;(3).【解析】

(1)根据,求出DQ,AP的长,再根据平行四边形的判定定理即可求解;(2)根据题意得到DE=BE,根据矩形的性质得到,根据全等三角形的性质得到,即可求出t的值,再根据勾股定理即可求解;(3)分别过点、作,,根据矩形的性质可得,求出的长,再根据垂直平分线的性质得到PD=PQ,故DE=PM,代入即可求出t的值.【详解】(1)证明:∵,∴当秒时,两点停止运动,在运动过程中,,∴,当时,,,∴,又∵,∴,∴四边形为平行四边形.(2)如图①,设交于点,若平分对角线,则,∵,∴,,在和中,,∴,∴,,∴,解得,符合题意,∴当秒时,平分对角线,此时,,∵,,∴四边形是平行四边形,过点作于点,∵,,,∴,,∴,由勾股定理,得,∴四边形的周长.(3)如图②,分别过点、作,,分别交于点、,连接、,可得四边形是矩形,,,,在和中,∵,∴,∴,∵点在的垂直平分线上,∴,,四边形是矩形,∴,即,解得,则当为时,点恰好在的垂直平分线上.【点睛】此题主要考查矩形动点问题,解题的关键是熟知全等三角形的判定与性质、平行四边形的判定与性质.20、(1)y=﹣2x+1(2)18元【解析】

(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.【详解】解:(1)设y=kx+b(k≠0),由图象可知,,解得∴销售量y与定价x之间的函数关系式是:y=﹣2x+1.(2)超市每天销售这种商品所获得的利润是:W=(﹣2×13+1)(13﹣10)=1821、【解析】

按顺序分别进行二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简,然后再按运算顺序进行计算即可得.【详解】+(π﹣3)0﹣()﹣1+|1﹣|==.【点睛】本题考查了实数的混合运算,涉及了二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简等,熟练掌握各运算的运算法则是解题的关键.22、(1)见解析;(2)见解析;(3)见解析.【解析】

(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.【详解】(1)在RtΔFCD中,G为DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如图②,(1)中结论仍然成立,即EG=CG.

理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

∴∠AMG=∠DMG=90°.

∵四边形ABCD是正方形,

∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.

在△DAG和△DCG中,

AD=CD∠ADG=∠CDGDG=DG,

∴△DAG≌△DCG(SAS),

∴AG=CG.

∵G为DF的中点,

∴GD=GF.

∵EF⊥BE,

∴∠BEF=90°,

∴∠BEF=∠BAD,

∴AD∥EF,

∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,

∴△DMG≌△FNG(ASA),

∴MG=NG.

∵∠DA∠AMG=∠N=90°,

∴四边形AENM是矩形,

∴AM=EN,

在△AMG和△ENG中,

AM=EN∠AMG=∠ENGMG=NG,

∴△AMG≌△ENG(SAS),

∴AG=EG,

∴EG=CG;

(3)如图③,(1)中的结论仍然成立.

理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.

∵MF∥CD,

∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°

∵FN⊥AB,

∴∠FNH=∠ANF=90°.

∵G为FD中点,

∴GD=GF.

在△MFG和△CDG中

∠FMG=∠DCG∠MFD=∠CDGGF=GD,

∴△CDG≌△MFG(AAS),

∴CD=FM.MG=CG.

∴MF=AB.

∵EF⊥BE,

∴∠BEF=90°.

∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,

∴∠NFH=∠EBH.

∵∠A=∠ANF=∠AMF=90°,

∴四边形ANFQ是矩形,

∴∠MFN=90°.

∴∠MFN=∠CBN,

∴∠MFN+∠NFE=∠CBN+∠EBH,

∴∠MFE=∠CBE.

在△EFM和△EBC中

MF=AB∠MFE=∠CBEEF=EB,

∴△EFM≌△EBC(SAS),

∴ME=CE.,∠FEM=∠BEC,

∵∠【点睛】考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.23、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分别求解即可.试题解析:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.24、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.【解析】

(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.【详解】解:作在中,,则答:城与台风中心之间的最小距离是设上点,千米

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论