版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市沼涛中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将函数的图象向右平移个单位长度得到图象,若的一个对称中心是,则的一个可能取值是(
)[A.
B.
C.
D.参考答案:D2.正方体中截面和截面所成的二面角的大小为(
)A.
B.
C.
D.参考答案:D略3.等差数列中,(
)A.9
B.10
C.11
D.12参考答案:B4.实数对(x,y)满足不等式组若目标函数z=kx﹣y在x=3,y=1时取最大值,则k的取值范围是()A. B. C. D.(﹣∞,﹣1]参考答案:B【考点】简单线性规划.
【专题】计算题.【分析】好像约束条件表示的可行域,确定目标函数的几何意义,通过目标函数的最小值,求出k的范围即可.【解答】解:实数对(x,y)满足不等式组表示的可行域如图:目标函数z=kx﹣y在x=3,y=1时取最大值,即直线z=kx﹣y在y轴上的截距﹣z最小,由图形可知,直线z=kx﹣y的斜率最大值为1,k的最小值为﹣,所以k的取值范围是.故选B.【点评】本题考查线性规划的应用,目标函数的几何意义是解题的关键,考查数形结合的思想以及计算能力.5.若点O和点F分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(
)A、
B、
C、
D、参考答案:A6.某工厂为了对新研发的一种产品进行合理
定价,将该产品按事先拟定的价格进行试销,得到数据如右表.预计在今后的销售中,销量与单价仍然服从(,)的关系,且该产品的成本是4元/件,为使工厂获得最大利润(利润=销售收入-成本),该产品的单价应定为()元A.
B.8
C.
D.参考答案:C略7.下列命题中,真命题是()(A)x0∈R,≤0
(B)x∈R,
2x>x2(C)双曲线的离心率为
(D)双曲线的渐近线方程为参考答案:D8.设椭圆的离心率为,右焦点为F(c,0),方程的两个实根分别为x1和x2,则点P(x1,x2)(
)
A.必在圆内
B.必在圆上
C.必在圆外
D.以上三种情形都有可能参考答案:A9.若直线与圆有公共点,则实数取值范围是(
)(A)
(B)
(C)
(D)参考答案:C略10.若A(1,﹣2,1),B(4,2,3),C(6,﹣1,4),则△ABC的形状是()A.不等边锐角三角形 B.直角三角形C.钝角三角形 D.等边三角形参考答案:A【考点】向量在几何中的应用;平面向量数量积的运算.【分析】求出各边对应的向量,求出各边对应向量的数量积,判断数量积的正负,得出各角为锐角.【解答】解:,,得A为锐角;,得C为锐角;,得B为锐角;所以为锐角三角形故选项为A二、填空题:本大题共7小题,每小题4分,共28分11.若i为虚数单位,则复数=
.参考答案:1﹣2i【考点】复数代数形式的乘除运算.【分析】复数的分子、分母同乘分母的共轭复数1﹣i,化简为a+bi(a,b∈R)的形式即可.【解答】解:===1﹣2i故答案为:1﹣2i.12.如果(x2﹣1)+(x﹣1)i是纯虚数,那么实数x=
.参考答案:-1【考点】A2:复数的基本概念.【分析】直接由实部为0且虚部不为0列式求解.【解答】解:∵(x2﹣1)+(x﹣1)i是纯虚数,∴,解得:x=﹣1.故答案为:﹣1.13.已知线段AD∥平面α,且与平面α的距离等于4,点B是平面α内动点,且满足AB=5,AD=10.则B、D两点之间的距离的最大值为.参考答案:【考点】直线与平面平行的性质.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】记A、D在面α内的射影分别为A1、D1,由AB=5,可得出B在面α内以A1为圆心、3为半径的圆周上,由勾股定理能求出B、D两点之间的距离的最大值.【解答】解:记A、D在面α内的射影分别为A1、D1,∵AB=5,AA1=4,∴A1B=3,即B在面α内以A1为圆心、3为半径的圆周上,又A1D1=10,故D1B最大为13,最小为7,而DD1=4,由勾股定理得BB、D两点之间的距离的最大值为:=.故答案为:.【点评】本题考查两点间距离的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.14.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M、m,则M-m=_____
___.参考答案:32略15.实数x,y满足,则的最小值是_______________.参考答案:略16.在空间直角坐标系中,点A的坐标为(1,2,3),点B的坐标为(0,1,2),则A,B两点间的距离为
▲
.参考答案:两点间的距离为,故答案为.
17.直线与直线的交点坐标是____________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,内角A、B、C的对边分别为a,b,c,且=1.(1)求∠C;(2)若c=,b=,求∠B及△ABC的面积.参考答案:【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)由已知条件化简变形可得:a2+b2﹣c2=ab,利用余弦定理可得cosC,结合范围C∈(0°,180°),即可得解C的值.(2)利用已知及正弦定理可得sinB,利用大边对大角可求角B的值,利用两角和的正弦函数公式可求sinA的值,利用三角形面积公式即可求值得解.【解答】(本题满分为12分)解:(1)由已知条件化简可得:(a+b)2﹣c2=3ab,变形可得:a2+b2﹣c2=ab,由余弦定理可得:cosC==,∵C∈(0°,180°),∴C=60°…6分(2)∵c=,b=,C=60°,∴由正弦定理可得:sinB===,又∵b<c,∴B<C,∴B=45°,在△ABC中,sinA=sin(B+C)=sinBcoC+cosBsinC==,∴S△ABC=bcsinA==…12分【点评】本题主要考查了余弦定理,正弦定理,大边对大角,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=。(I)若M为PA中点,求证:AC∥平面MDE;(II)求直线PA与平面PBC所成角的正弦值;(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?参考答案:(I)证明:在矩形中,连结交于,则点为的中点.在中,点为的中点,点为的中点,.又平面平面平面
(II)解:由则.由平面平面且平面平面,得平面又矩形中以为原点,所在的直线分别为轴,建立空间直角坐标系,则设平面的法向量为可取.设直线与平面所成角为,则.
(III)设,得.设平面的法向量为则由得
由平面与平面所成的锐二面角为得,或(舍).故在上存在满足条件.
略20.已知点,,,直线相交于点,且它们的斜率之积为.(1)求动点的轨迹方程;(2)试判断以为直径的圆与圆=4的位置关系,并说明理由;(3)直线与椭圆的另一个交点为,求面积的最大值(为坐标原点).参考答案:解:(1)设,由已知得化简得,所以点的轨迹方程为.--------------------3分(2)解法1:设点的中点为,则,ks*5@u,即以为直径的圆的圆心为,半径为,又圆的圆心为O(0,0),半径,,故,即两圆内切.
------------------7分解法2:由椭圆的定义得圆心距所以以为直径的圆与圆=4内切.
(3)解法1:若直线的斜率不存在,则,解得,,;若直线的斜率存在,设直线的方程为,由得,设,,,原点到直线的距离,所以ks*5@u设则,则有,.综上所述,的最大值为.
------------------12分解法2:设直线的方程为.由得,设,,,设则,则有,当,即,时,的最大值为.------------------12分
略21.已知椭圆的左右两焦点分别为,是椭圆上一点,且在轴上方,.(1)求椭圆的离心率的取值范围;(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
参考答案:解:,
∴,.(1),∴,在上单调递减.∴时,最小,时,最小,∴,∴.(2)当时,,∴,∴.∵,∴是圆的直径,圆心是的中点,∴在y轴上截得的弦长就是直径,∴=6.又,∴.∴椭圆方程是
-------10分(3)由(2)得到,于是圆心,半径为3,圆的方程是.椭圆的右准线方程为,,∵直线AM,AN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33499-2017钢框架发泡水泥芯材复合板》(2026年)深度解析
- 深度解析(2026)《GBT 33382-2016内铠装输泥橡胶软管及软管组合件》
- 任务3.1 模板管理
- 医疗数据安全治理:区块链风险评估
- 医疗数据安全标准化:区块链推动作用
- 医疗数据安全成熟度评估中区块链的关键作用
- 胸腰椎支具使用课件
- 胫骨骨折后康复课件
- 医疗数据安全区块链保护的技术路径探索
- 医疗数据安全共享的技术标准体系
- 2025年教师招聘考试教育综合知识6000题(主观题含答案)
- 基于生成对抗网络的图像修复与超分辨率-洞察及研究
- 广东省惠州市2025届高三下学期4月模拟考试化学
- 北美洲综合概况
- 二十届四中全会开启中国经济新篇章研究制定十五五规划建议
- 2025年国家开放大学《物流信息系统管理》形考任务1-4参考答案
- 冷库安全与管理培训内容课件
- 压疮预防及护理
- 励磁系统改造施工方案
- 多发性硬化患者护理查房
- 《老年服务礼仪与沟通》健康养老专业全套教学课件
评论
0/150
提交评论