线性代数难点解析(Analysisofthedifficultiesoflinearalgebra)_第1页
线性代数难点解析(Analysisofthedifficultiesoflinearalgebra)_第2页
线性代数难点解析(Analysisofthedifficultiesoflinearalgebra)_第3页
线性代数难点解析(Analysisofthedifficultiesoflinearalgebra)_第4页
线性代数难点解析(Analysisofthedifficultiesoflinearalgebra)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

线性代数难点解析(Analysisofthedifficultiesoflinear

algebra)

(A+B)=A2+2AB+BA+B2indicates2AB+A2+B2

(AB)=2(AB)(AB)indicatesA2B2

(AB)kindicatesAkBk

(A+B)indicatesA2-B2(A-B)

AlloftheaboveisonlytrueifAandBcanbeexchanged,i.e.,

AB=BA.

3)youcan,tgetA=0orB=0fromAB=0

4)wecan,tgetB=CfromAB=AC

5)A2=Acan'tgetA=IorA=0

6)youcan,tgetA=0fromA2=0

7)thedifferencebetweenmultiplicationandmultiplication

2inversematrix

1)(A-1)-1=A

2)(kA)-1=(1/k)A-1,(kdoesnotequal0)

3)(AB)-1=B-1-1a

4)(A-1)T=(AT)-1

5)||A-1=||-1A

3.Matrixtranspose

1)(AT)T=A

2)(kA)T=kAT,(kisanyrealnumber)

3)(AB)T=BTAT

T=4)(A+B)AT+BT

4.Adjointmatrix

1)A*A=AA*=||I(AB)*=B**A

2)(A*)*=||||n-2A*A=||An-1,(n2or

higher)

3)(kA)*=kn-1A*(A*)T=(AT)*

4)ifr(A)=n,thenr(A*)=n

Ifr(A)=n-1,thenr(A*)=1

Ifr(A)

5)ifAreversible,(A*)-1=(1/A)A,(A*)-1=

(A-1)*,A*=||A-1A

5.Elementarytransformation(3kinds)

1)tworows(column)

2)multiplyalltheelementsink(knot0)timesarow(column)

3)thecorrespondingelementoftheelementofarow(column)

toanotherrow(column)

Note:therank,row,columntransformcanbeusedfortherank

ofprimarytransformation

Toinvertmatrices,onlyroworcolumntransformscanbeused

Thesolutionofalinearsystem,youcanonlyusetherow

transformation

6.Elementarymatrix

1)thematrixobtainedbytheinitialtransformationoftheunit

matrix

(2)firstwaitforPleft(right)timesA,theobtainedPA(AP)

isthesamerow(column)transformationasP

3)theinitialarrayisreversible,anditsinverseisthe

initialmatrixofthesametype

E-lij=Eij,E(-1)I(k)=Ei(1/k),EM)ij(k)=Eij(-k).

7.Matrixequation

1)anequationcontaininganunknownmatrix

2)sufficientandnecessaryconditionsforsolvingmatrix

equations

AXisequaltoBandeachofthecolumnsthathavethesolutions

<==>Bcanberepresentedlinearlybythecolumnvectorsof

A

<==>r(A)=r(A;B)

Iv.Questionsandideas

1.Propositionsabouttheconceptsandpropertiesofmatrices

2.Operationofmatrix(addition,multiplication,

multiplication,transpose)

3.Determinationofmatrixinvertability

Then-thsquarematrixAreversibleisequalto>andthereare

nordersquareB,andAB=BA=I

<==>||Aindicateszero

<==>r(A)=n

<==>Acolumn(row)vectorgroupislinearlyindependent

<===>Ax=0,only0

<==>arbitraryb,soAx=balwayshasauniquesolution

<==>Aisnotzero

4.Inversematrix

1)definemethod:findBtomakeAB=IorBA=I

2)alongwiththelaw:A-1=(1/||A)A*

Note:whenusingthismethod,thealgebraicsubtypeoftherow

shouldbewrittenverticallyinA*.WhencalculatingAij,don,t

omit(-1)I+j.Whenn>3,theprimarytransformationmethod

isusuallyused.

3)methodofelementarytransformation:theline(A;I)only

transforminto(I;A-1)

4)blockmatrixmethod

SolvingmatrixequationAXisequaltoB

1)ifAisinvertible,thenXisequaltoAminusIB,butyou

cansolveforAminus1,andthenmultiplyAminusIBtosolve

forX

2)ifAisinvertible,theinitialtransformationmethodcan

beusedtosolveforXdirectly

(A;B)elementaryrowtransformation(I;X)

IfAisnotinvertible,thentheequationsoftheunknowncolumn

arereducedbygaussianeliminationtothestaircasesystem,

andtheneachcolumnofconstantsisevaluatedseparately.

Thethirdchapterislinearequations

A,key

1,understanding:vector,vectoroperations,andalinear

combinationofthevectorandlineartable,theconceptof

maximumlinearlyindependentgroup,linearcorrelationand

linearlyindependentconcept,theconceptofrankofvector

group,rankofmatrix,theconceptandnatureoftheconcept

ofbasicsolutionsystem.

2.Grasp:theoperationandoperationruleofvectors,the

calculationofmatrixrank,thestructureofsolutionof

homogeneousandnon-homogeneous1inearequations.

3.Application:linearcorrelation,linearlyindependent

judgment,determinationoflinearequations,homogeneousand

non-homogeneous1inearequations.

Second,thedifficulty

Linearlydependent,linearlyindependentdetermination.The

rankoftherankofthevectorgrouptotherankofthematrix.

Therelationshipbetweenthesystemandthelinear

representationofthevectorgroupandtherank.

lii.Analysisofkeydifficulties

Theconceptandoperationofthendimensionalvector

1)concept

2)operation

Ifalphaisalpha(al,a2,…,an)T,beta=(bl,b2,…,bn)

T

Alpha+beta=(al+bl,a2+b2,…an+bn)T

Numberoftimes:kalpha=(kal,ka2,…,kan)T

(alphabeta)=albl+a2b2+…+anbn=alphaTbeta=beta

Talpha

2.Linearcombinationandlineartable

3.Linearcorrelationisindependentoflinearity

1)concept

2)necessaryandnecessaryconditionsforlinearcorrelation

andlinearity

Linearcorrelation

Alpha1,alpha2,...Alphaslinearcorrelation

Alpha1,alpha2,alphas,alphas,xl,x2,xs,T=0have

non-zerosolutions

Therankrofthe>vectorgroupalpha1,alpha2,alphas,alpha

s,thenumberofvectors

<===>hasanalphaI(I=1,2,...s)canberepresented

bytheothers-1vector

Special:nandvectorlinearcorrelation<==>|alpha1

alpha2...Alphan|=0

Nplusonendimensionalvectorsmustbelinearlydependent

Linearlyindependent

Alpha1,alpha2,...Alphasislinearlyindependent

Alpha1,alpha2,alphas,alphas,xl,x2,xs,Tisequalto

zero

Therankrofthe>vectorgroupalpha1,alpha2,alphasis

equaltos(thenumberofvectors)

EachofthevectorsalphaI(I=1,2,…,s)cannotbe

representedbytherestofthes-1vectors

Importantconclusion

A,theechelonvectorgroupmustbelinearlyindependent

B,ifthealpha1,alpha2,...Alphasislinearlyindependent.

Alphai1,alphai2.AlphaItmustbe1inearlyindependent,and

anyofitsextendedgroupsmustbelinearlyindependent.

C,twoorthogonal,non-zerovectorgroupsarelinearly

independent.

4.Rankofvectorgroupandrankofmatrix

1)theconceptofamaximal1inearindependentgroup

2)rankofvectorgroup

3)rankofmatrix

(1)r=r(A)(AT)

(2)r(A+B)orlessr+r(A)(B)

R(kA)=r(A),kdoesnotequal0

(4)r(AB)minorless(r(A),r(B))

IfAisinvertible,thenr(AB)=r(B);

IfBisinvertible,thenr(AB)=r(A)

Andthenwehavethembynmatrix,andBisthenbypmatrix,

ifABisequalto0,thenr(A)+r(B)islessthanorequal

ton

4)therankofthevectorgroupandtherankofthematrix

R(A)=A'srowrank(rankoftherowvectorgroupofmatrix

A)=columnrankofA(rankofcolumnvectorgroupofmatrix

A)

Therankofthevectorgroupisinvariantafterelementary

transformationmatrixandvectorgroup

(3)ifthevectorgroup(I)by(II)lineartable,isr(I)

r(II)orless.Inparticular,theequivalentvectorgrouphas

thesamerank,butthesamevectorgroupoftherankisnot

necessarilyequivalent.

5.Conceptandmethodofbasicsolutions

1)concept

2)methodof

MakeelementaryrowtransformationintoAsteppedonAmatrix,

accordingtothefirstnonzerocoefficientsineachlineofthe

non-zerorepresentedbytheunknownistheprimary(totalof

r(A)Aprincipalcomponent),thenlefttootherunknownisfree

variables(Atotalofn-r(A)A),thefreevariablesaccording

tothestepaftertheassignment,againintosolvingbased

solutionisavailable.

6.Thedeterminationofnon-zerosolutionofhomogeneoussystem

1)let'ssaythatAisthembynmatrix,andAxisequalto

0andthenecessaryconditionsfornon-zerosolutionsarer(A)

<n,whichisAlinearcorrelationofcolumnvectorsofA.

2)ifAisnordermatrix,theAx=0isnotsufficientand

necessaryconditionsforthezerosolutionis||A=0

3)thesufficientconditionforanon-zerosolutiontoAxis

0ism<n,whichisthenumberofequations

Non-homogeneous1inearequationshavethedeterminationof

solutions

1)let'ssaythatAisthembynmatrix,andAxisequalto

bandthenecessaryconditionisthattherankofAisequal

totherankoftheaugmentedmatrix(A),whichisr(A)=r(A).

Let'ssaythatAisthembynmatrix,thesystemAxisequal

tob

Theonlysolutionis<=>r(A)=r(A+)=n

Thereisaninfinitenumberofsolutions,whichareequalto>

r(A)=r(A).

Nosolution<==>r(A)+1=r(A)

Thestructureofthesolutionofnonhomogeneouslinear

equations

SoifwehavenofthelinearequationsAxisequaltob,we

havesolutions,let'ssayeta2,Etatisthefundamental

solutionofthecorrespondinghomogeneoussystem,Ax=0,and

xiisasolutiontoAxisequaltob,kletaoneplusk2eta

twoplus...Plusktetatplusxiisthegeneralsolutionto

Axisequaltob.

1)ifxi1,xi2isasolutiontoAxisequaltob,thenxi1

minusxi2isasolutiontoAxisequalto0

2)ifxiisasolutiontoAxisequaltob,etaisasolution

toAxisequalto0,andxi+ketaisstillasolutiontoAx

isequaltob

3)ifAx=bhasauniquesolution,Ax=0haszerosolutions;

Incontrast,Ax=bhasnoinfinitenumberofsolutionswhen

Ax=0iszero.

Iv.Questionsandideas

1.Propositionsabouttheconceptandnatureofn-dimensional

vectors

2.Additionandmultiplicationofvectors

3.Linearcorrelationandlinearlyindependentproof

1)definition

Aklalpha1+k2alpha2+...+ksalphas=0,andthendo

theidentitytransformationontheupperformula(togetcloser

toknownconditions!)

B=C,AB=AC,soyoucanmultiplybysomeAbytheinformation

oftheknownconditions

Inordertoarrangetheequations,theequationsare

transformedintohomogeneouslinearequationswithknown

conditions.Finally,theanalysisprovesthatkl,k2….,the

valueofks,drawthedesiredconclusion.

2)therank(=thenumberofvectors)

3)thereareonlyzerosolutionstothehomogeneoussystem

4)contradiction

4.Findtherankofthegivenvectorgroupandthemaximallinear

independentgroup

I'mgoingtousetheelementarytransformationmethod,

Thevectorgroupisthematrix,whichissolvedbyelementary

transformation.

5.Therankofmatrix

Commonelementarytransformationmethod.

6.Solvinghomogeneouslinearequationsandnon-homogeneous

linearequations

Chapterivlinearspace

A,key

1.Understanding:conceptsoflinearspace,basis,dimension,

innerproduct,length,Angleanddistance,orthogonalvector

groupandorthonormalbasis,orthogonalmatrix

2.GrasptheoperationrulesofRnanditsvector.

Calculationofinnerproduct,length,Angleanddistance.

3.Application:orthogonaltotwovectors.

Second,thedifficulty

Thepropertiesandapplicationsoforthogonalmatrices.

lii.Analysisofkeydifficulties

1.Conceptsandpropertiesoflinearspaceandbasis

2.Innerproduct,distanceandAngle

1)innerproduct:alphabeta=albl+a2b2+…+anbn

2)length:thesquarerootofalphaalpha(alphaalpha)=(al2

+a22+...+an2)

3)distance:d=equaltothesquarerootofalphabeta(al-

bl)2+(a2-b2)2+...+(an-bn)2)

4)AngleofAngle:costhetatheta=(alphabeta)/(

Thetaisequaltoarccosineofalphabetaofalphabeta.

5)orthogonal:anAngleof90,alphaandbeta,toalphabeta

coming

Alphabetaisorthogonaltobeta

6)orthogonalvectorgroup:anytwovectorsareperpendicular

toeachother

Anygroupofnon-zeroorthogonalvectorsmustbelinearly

independent

ThenumberofvectorsinRnisnotgreaterthann

Theorthogonalizationofthevector

1)theconceptoforthonormalbasis

2)schmidtorthogonalization(normalized,renormalized)

4.Orthogonalmatrix

1)concept

2)thenatureofthe

IfAisorthogonalarray==>=1Aor1

Sothisisequalto>Aminus1isstillorthogonalmatrices

Soit'sgoingtobeequalto>,soit'sgoingtobeequalto

b

==>Aminus1=AT

3)n-ordersquareAisanorthonormalbasisforRnwithnrows

oftheorthogonalarray<==>A

Thencolumnvectorsof==>Aconstituteanorthonormalbasis

forRn

Iv.Questionsandideas

1.Determinewhetheragivensetisalinearspace

Itisgenerallydeterminedbythedefinitionandnatureof

linearspace

Findthebasisanddimensionofthe1inearspace

3.Verifythatthen-dimensionalvectorgroupisanorthonormal

basisforRn

Step:1)theproofvectorisorthogonal,thatis,theinner

productiszero

2)eachvectorisaunitvector,whichis1

4.CalculatetheinnerproductoftwovectorsandtheAngleand

distancebetweenvectors

Thestandardisnormalizedforthegivenvectorgroup

Step:1)determinethelinearcorrelationofvectorgroups,and

onlylinearlyindependentvectorgroupscanbenormalized

2)orthogonalization(schmidtorthogonalization)

3)standardizationvi=betaI/thewholelotbetaI

6.Provethepropositionaboutorthogonalmatrix

Thedecisionoftheorthogonalmatrix

1)definition:ifAAT==>Aisanorthonormalmatrix

IfAATdoesnotequalto==>Aisnotorthogonalarray

Thismethodisusedtoprovetheabstractmatrix.

Then-thsquarematrixAisanorthonormalbasisforRn,which

isannrowvector(orcolumnvector)oftheorthogonalarray

<=>A

Therow(column)oftherow(column)ofAistheunitvector

andit'sorthogonal

Thismethodisusedtogivethematrixofnumericalvalue.

Chapterfiveeigenvaluesandeigenvectors

A,key

1.Understanding:theconceptandbasicpropertiesof

eigenvaluesandeigenvectors.

Theconceptandpropertiesofasimilarmatrixaresimilarto

theconditionsofdiagonalmatrices.

Covenantmatrix.

2.Graspthemethodofcalculatingeigenvalueandeigenvector.

Findasimilardiagonalmatrix.

Second,thedifficulty

Similardiagonalizationanditsapplication.

lii.Analysisofkeydifficulties

1.Theconceptandpropertiesofeigenvaluesandeigenvectors

ofmatrices

1)concept

Note:(1)ifthelambdaisAcharacteristicvalue,then|

lambdaI-A|=0,sothelambdaI-Aisinvertiblematrix

(2)ifthestatusisnotAcharacteristicvalue,thenthe|

IlambdaI-Aindicateszero,sothelambdaI-Aisinvertible

matrix

(3)inparticular,thecharacteristicvalueof0isA<==>

|A=0<==>Airreversible

ThefundamentalsolutiontoAxisequalto0isalinearly

independenteigenvectoroflambdaequalszero

Ifr(A)=1,thenlambda1=sigmaaii,lambda2=lambda3

.Lambda-n—0

2)thenatureofthe

Ifxl,x2arealltheeigenvectorsoftheeigenvaluelambdaI,

thenthe1inearcombinationofxl,x2,andklxlplusk2x2

(non-zero)arestilltheeigenvectorsoflambdaI.The

eigenvectorsoflambdaIarenotunique,andinturn,an

eigenvectorcanonlybelongtooneeigenvalue.

Theeigenvectorsofdifferenteigenvaluesarelinearly

independent,andwhenlambdaIisthekweighteigenvalueof

A,thenumberof1inearlyindependenteigenvectorsoflambda

Iisnotgreaterthank.

Thesumoftheeigenvaluesisequaltothesumoftheelements

inthemaindiagonalofthematrix,andtheproductofthe

eigenvaluesisequaltothevalueofthedeterminantofA.

2.Conceptsandpropertiesofsimilarmatrices

1)concept

2)thenatureofthe

IfA~Bisequalto>AT~BT

==>A-1"b-l(ifAandBarereversible)

Soit'sequalto>Akminusk.

==>|lambdaI-A|=||lambdaI-B,thusAandBhave

thesameeigenvalues

==>||A=B||,thusAandBatthesametime,the

reversibleorirreversible

==>r(A)=r(B)

3.Thematrixcanbesimilartothenecessaryandsufficient

conditionsfordiagonalization

1)theconceptofsimilardiagonalization

2)necessary

Aissimilartothediagonalmatrix,whichhasnlinearly

independenteigenvectors

Ineacheigenvalueof>A,thenumberoflinearlyindependent

eigenvectorsisexactlythesameasthenumberofvaluesofthe

eigenvalue

3)thesufficientconditionforAtobesimilartothediagonal

matrixisthatAhasndifferenteigenvalues

4.Similarityofsymmetricmatrix

1)thesolidsymmetricmatrixmustbediagonalized

2)features

Theeigenvaluesareallreal,andtheeigenvectorsarereal

vectors

Theeigenvectorsofdifferenteigenvaluesareorthogonalto

eachother

Theeigenvaluesofkhavek1inearlyindependenteigenvectors,

orr(lambdaIminusA)=n-k

Iv.Questionsandideas

1.Themethodofeigenvalueandeigenvector

1)theabstractmatrix

Thevaluesofeigenvaluesandeigenvectorsandtheirproperties

derivethevaluesofeigenvalues.

2)thedigitalmatrix

(1)fromthecharacteristicequation|lambdaI-A|=0and

thecharacteristicvalueoflambdaI(n,includingheavyroot)

Thesolutionofthehomogeneoussystem(lambdaIminusA)x=

0,

Thefundamentalsolutionisthelinearlyindependent

eigenvectorsoflambda.

2.DeterminewhetherAcanbediagonalized

1)method1:n-ordersquareAcanbediagonalized<===>

Ahasnlinearlyindependenteigenvectors

Method2:anyeigenvaluelambdaI(settokiweightroot)of

n-ordermatrixAisn-r(lambdail-A)=ki

2)tomakeAAdiagonalmatrixstep

Solet'sfigureouttheeigenvaluesofA,lambda1,lambda2,...,

lambdan

Iwanttofindthecorrespondinglinearindependent

eigenvectorsxl,x2,...,xn

1lambda.

ThereversiblematrixP=(xl,x2...xn),P-1AP=[lambda2...]

Lambdan

3.Takethedeterminantwiththeeigenvalueandthesimilarity

matrix

1)||Alambda=1lambda2...Lambdanwhere:lambda1,lambda

2,...LambdanistheneigenvalueofA

2)ifAandB,then||=||BA

4.UsesimilardiagonalizationforAn

IfA~isAthereisAreversiblematrixP,soP-1AP=the

same

SoAisequaltoP,whichisequaltoPminus1

Amongthem:theequivalentstandardofA

5.Proofofeigenvalueandeigenvector

Chapter6realquadraticform

A,key

1.Understanding:theconceptofquadraticform,the

relationshipbetweenquadraticformandsymmetricarray,the

conceptofmatrixcontract,theconceptofstandardand

normativestandard,theconceptofquadraticandpositive

definitematrix.

Master:thequadraticformandthequadraticform.

Therelationshipbetweencontractsandthetransformationof

thewesternvariables.

Thejudgmentofthequadraticformandthepositivedefinite

matrix.

Application:orthogonaltransformationmethod,matching

methodandelementarytransformationmethodarestandard,the

standardmodelisthestandard.

Second,thedifficulty

Thesecondisstandard.

lii.Analysisofkeydifficulties

1.Theconceptofquadraticformanditsstandardtype

1)quadraticform

Thequadraticmatrixisunique,andthequadraticformshould

beabletowritethesecondmatriximmediately.Conversely,the

realsymmetricmatrixshouldbeabletoconstructthequadratic

form.

2)quadraticstandard

(1)concept

Thepositiveandnegativeinertialindices,r(f)=r(A)=p

+q

WhentheorthogonaltransformationisAstandardtype,the

squarecoefficientofthestandardtypemustbetheneigenvalue

ofthematrixA,andthedistributionmethoddoesnothavethis

property.

3)inertiatheorem

Thepositiveandnegativeinertialindexofquadraticformis

theonlyconstant,whichreflectstheessenceofquadrat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论