专题05 一次函数的图象和性质(测)-备战2019年中考数学二轮复习讲练测(解析版)_第1页
专题05 一次函数的图象和性质(测)-备战2019年中考数学二轮复习讲练测(解析版)_第2页
专题05 一次函数的图象和性质(测)-备战2019年中考数学二轮复习讲练测(解析版)_第3页
专题05 一次函数的图象和性质(测)-备战2019年中考数学二轮复习讲练测(解析版)_第4页
专题05 一次函数的图象和性质(测)-备战2019年中考数学二轮复习讲练测(解析版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

备战2019年中考二轮讲练测(精选重点典型题)专题05一次函数的图象和性质一、期考典测——他山之石1.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.【答案】C【解析】分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.详解:∵一次函数y=x+b中∴一次函数的图象经过一、二、四象限,故选:C.2.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(,)B.(,)C.(,)D.(,)【答案】A.【解析】试题分析:∵OA1=1,∴点A1的坐标为(1,0),∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1),∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2=,∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得,B3(,),B4(,),…Bn(,),∴点B2015的坐标是(,).故选A.考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.3.如图,在一次函数的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有()A.1个B.2个C.3个D.4个【答案】C.考点:1.一次函数图象上点的坐标特征;2.分类讨论.4.如图,已知点A(﹣8,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.4【答案】C.【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.【解析】如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),③若∠C为直角,则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心的圆与直线的交点上.过点E作垂线与直线的交点为F(﹣3,),则EF=.∵直线与x轴的交点M为(,0),∴EM=,EF==.∵E到直线的距离d==5,∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线恰好有一个交点.所以直线上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选C.考点:一次函数图象上点的坐标特征;勾股定理的逆定理;分类讨论.5.如图,在平面直角坐标系中,点在直线上.连结将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为 ()(A) (B) (C) (D)【答案】D【解析】试题分析:把点A代入直线y=2x+3可求得m=1,因此A(-1,1),因此可知∠AOy=45°,所以由旋转可知B与A对称,即B为(1,1),代入直线y=-x+b可求得b=2.故选D考点:一次函数,旋转变换6.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=______;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=______.【答案】12017【解析】分析:利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d的值,利用三角形的面积公式可求出S2的值;(2)分别代入k=2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.详解:当y=0时,有(k-1)x+k+1=0,解得:x=-1-2k-1∴直线l1与x轴的交点坐标为(-1-2k-1,0同理,可得出:直线l2与x轴的交点坐标为(-1-2k,0∴两直线与x轴交点间的距离d=-1-2k-(-1-2k-1)=2k-1联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(-1,-2).(1)当k=2时,d=2k-1-2k∴S2=12×|-2|d=1故答案为:1.(2)当k=3时,S3=22-23;当k=4时,S4=23-24∴S2+S3+S4+……+S2018==21-22018=2-1故答案为:201710097.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是.【答案】(,0).考点:一次函数图象上点的坐标特征;等腰直角三角形;规律型.8.如图,直线与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.【答案】(﹣8,﹣3)或(4,3).【分析】首先解得点A和点B的坐标,再利用位似变换可得结果.【解析】∵直线与x轴交于点A,与y轴交于点B,令x=0可得y=1;令y=0可得x=﹣2,∴点A和点B的坐标分别为(﹣2,0);(0,1),∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,∴,∴O′B′=3,AO′=6,∴B′的坐标为(﹣8,﹣3)或(4,3).故答案为:(﹣8,﹣3)或(4,3).考点:位似变换;分类讨论;一次函数图象上点的坐标特征.9.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.【答案】0<m<13【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣512由y=﹣512x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣512x+m(m>设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125m∴A(125m,0),B(0,m即OA=125m,OB=m在Rt△OAB中,AB=OA过点O作OD⊥AB于D,∵S△ABO=12OD•AB=12∴12OD•135m=12∵m>0,解得OD=1213m由直线与圆的位置关系可知1213m<6,解得m<13故答案为:0<m<13210.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.【答案】.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解析】由题意点A2的横坐标,点A4的横坐标,点A6的横坐标,点A8的横坐标.故答案为:.考点:坐标与图形变化-旋转;一次函数图象与几何变换.11.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)20;(2);(3)P(﹣6,6)或P(﹣,﹣).【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE•OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G的坐标,于是得到S=S四边形ABCD﹣S△DE′G;③当t≥7时,S=S四边形ABCD=20;(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,分两种情况讨论:①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT;②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),∵PM⊥直线BC于M,交x轴于n,∴M(m,﹣4),N(m,0),∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,分两种情况讨论:①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作FK⊥x轴于K,则KF=4,由△TKF∽△PNT得,=2,∴NT=2KF=8,∵PN2+NT2=PT2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=﹣6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,=2,∴HT=2CF=2,∵,即,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y轴上.考点:一次函数综合题;分段函数;动点型;分类讨论;压轴题.学科@网12.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【答案】(1);(2)E(2,2),或(3,).【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到比例式,代入数据即可得到结论.【解析】(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5.∵△BOD与△BCE相似,∴或,∴或,∴BE=,CE=,或CE=,∴E(2,2),或(3,).考点:相似三角形的性质;待定系数法求一次函数解析式.二、模考典测——拾级而上1.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4【答案】C.【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴解得:m>1.故选C.考点:一次函数图象与几何变换.2.若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<0【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【答案】B【解析】试题分析:∵2x﹣y=2,∴y=2x﹣2,∴当x=0,y=﹣2;当y=0,x=1,∴一次函数y=2x﹣2,与y轴交于点(0,﹣2),与x轴交于点(1,0),即可得出选项B符合要求,故选B.考点:一次函数与二元一次方程的关系.学科@网2.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8sB.3.8sC.3sD.预测结果不可靠【答案】A【解析】【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【详解】(1)设y=kx+b依题意得,k+b=15.62k+b=15.4解得k=-0.2b=15.8∴y=﹣0.2x+15.8,当x=5时,y=﹣0.2×5+15.8=14.8,故选A.3.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.﹣3≤m≤1C.﹣3≤m≤3D.﹣1≤m≤0【答案】B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.【解析】∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.考点:一次函数图象上点的坐标特征;新定义.4.已知直线与坐标轴分别交于点A,B,点P在抛物线上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【答案】A.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数中x=0,则y=3,∴点A的坐标为(0,3);令一次函数中y=0,则,解得:x=,∴点B的坐标为(,0),∴AB=.∵抛物线的对称轴为x=,∴点C的坐标为(,3),∴AC==AB=BC,∴△ABC为等边三角形.令中y=0,则,解得:x=,或x=,∴点E的坐标为(,0),点F的坐标为(,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定;分类讨论.5.已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足,则点P的坐标为()A.(,)B.(,)C.(2,1)D.(,)【答案】D.【分析】根据题意可以求得m、n的值,从而可以求得点P的坐标,本题得以解决.【解析】∵,化简,得(m+n)2=4,∵点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,∴n=m﹣1,∴,解得:或.∵点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,∴m>0,n>0,故点P的坐标为(1.5,0.5),故选D.考点:一次函数图象上点的坐标特征.6.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.【答案】﹣4≤b≤﹣2.【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>;根据x满足0<x<3,得出=0,=3,进而求出b的取值范围.【解析】∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>;∴<x<,∵x满足0<x<3,∴=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为:﹣4≤b≤﹣2.考点:一次函数图象与几何变换.7.如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是.【答案】(0,1.5).学科@网【解析】试题分析:由题意得:A(-3,0),B(0,4);∴OA=3,OB=4.那么可得AB=5.易得△ABC≌△ADC,∴AD=AB=5,∴OD=AD-OA=2.设OC为x.那么BC=CD=4-x.那么x2+22=(4-x)2,解得x=1.5,∴C(0,1.5).考点:一次函数综合题.8.如图,已知一次函数和的图象交于点,则二元一次方程组的解是.【答案】【解析】考点:一次函数交点与一次方程组的解的关系.9.如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为(_______).【答案】2n﹣1,0【解析】【分析】依据直线l为y=3x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点An的坐标为(2n﹣1,0).【详解】∵直线l为y=3x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=3,即B1(1,3),∴tan∠A1OB1=3,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点An的坐标为(2n﹣1,0),故答案为:2n﹣1,0.10.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是.【答案】(,).【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解析】∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(,),B2(,),B3(,),…,∴Bn坐标(,).故答案为:(,).考点:一次函数图象上点的坐标特征;正方形的性质;规律型.11.如图,在平面直角坐标系xOy中,一次函数的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【答案】(1)点B(0,1)在直线O′B′上;(2)当α=120°时,四边形ADO′B′是平行四边形.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解析】解;(1)如图1中,∵一次函数的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得:,∴直线O′B′的解析式为,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.考点:一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.三、中考典测——实战演练1.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2【答案】D.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解析】∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴,解得:.∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴,解得0<k<2.故选D.考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.学科@网2.一次函数y=﹣x+1(0≤x≤10)与反比例函数(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1B.﹣≤x≤C.﹣≤x≤D.1≤x≤【答案】B.【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解析】当x=﹣10时,=﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤ym<yn≤﹣,则xn﹣xm=ym﹣yn+=(ym﹣yn)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.3.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,则常数b=()A.12B.2C.﹣1D.【答案】B【解析】【分析】直线解析式乘以2后和方程联立解答即可.【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,所以﹣b=﹣2b+2,解得:b=2,故选B.4.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2C.52D.2【答案】C【解析】分析:通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.详解:过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a∴DE=2.当点F从D到B时,用5s.∴BD=5.Rt△DBE中,BE=BD∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2.解得a=52故选:C.5.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).【答案】m﹣6≤b≤m﹣4.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解析】∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.考点:两条直线相交或平行问题.6.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为.【答案】.【分析】由点A1的横坐标可求出点B1的坐标,进而可得出A1B1、A1B2的长度,由1+A1B2=可得出点A2、B2的坐标,同理可求出点A3、An的坐标,此题得解.【解析】∵AnBn+1∥x轴,∴tan∠AnBn+1Bn=.当x=1时,=,∴点B1的坐标为(1,),∴A1B1=1﹣,A1B2==﹣1.∵1+A1B2=,∴点A2的坐标为(,),点B2的坐标为(,1),∴A2B2=﹣1,A2B3==﹣,∴点A3的坐标为(,),点B3的坐标为(,).同理,可得:点An的坐标为(,).故答案为:.考点:一次函数图象上点的坐标特征;规律型:点的坐标;综合题.7.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240Dx260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.【答案】(1)x﹣60、300﹣x、260﹣x;(2)w=10x+10200(60≤x≤260);(3)m的取值范围是0<m≤8.【解析】分析:(1)根据题意可以将表格中的空缺数据补充完整;(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(3)根据题意,利用分类讨论的数学思想可以解答本题.详解:(1)∵D市运往B市x吨,∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,故答案为:x﹣60、300﹣x、260﹣x;(2)由题意可得,w=20(x﹣60)+25(300﹣x)+1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论