版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年甘肃省嘉峪关九年级上期末数学
试卷含答案解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列方程中,关于x的一元二次方程是()
A.x2+x+y=0B.1x2-3x+l=0C.(x+3)2=x2+2xD.x2J=2
X
DO是aABC的外接圆,若NAOB=100。,则NACB的度
A.40°B.50°C.60°D.80°
4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共
331万元.如果平均每月增长率为x,则由题意列方程应为()
A.100(1+x)2=331B.100+100X2x=331
C.100+100X3x=331D.100[1+(1+x)+(1+x)2]=331
5.下列函数中,当x>0时,y随x的增大而减小的是()
A.y=x+lB.y=x2-1C.y=.-D.y=-(x-1)2+1
X
6.若。P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系
的原点。与。P的位置关系是()
A.在。P内B.在OP上C.在OP外D.无法确定
7.若△ABCs^DEF,AABC与ADEF的相似比为1:2,则AABC
与4DEF的周长比为()
A.1:4B.1:2C.2:1D.1:^2
8.若函数y=mx2+(m+2)x+lm+1的图象与x轴只有一个交点,那么
m的值为()
A.0B.0或2c.2或-2D.0,2或-2
9.已知正六边形的边长为10cm,则它的边心距为()
A.4cmB.5cmC.5、辰mD.10cm
10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),
旦yl)、C(-1,
22
二、填空题(本大题共8小题,每小题4分,共32分)
11.从长度分不,为2,4,6,7的四条线段中随机取三条,能构成三角
形的概率是
12.若|b-l|+《T^=0,且一元二次方程kx2+ax+b=0有两个实数根,
则k的取值范畴是
13.。0的半径为13cm,AB,CD是。O的两条弦,AB〃CD,AB=
24cm,CD=10cm.则AB和CD之间的距离
14.将抛物线:y=x2-2x向上平移3个单位,再向右平移4个单位得
到的抛物线是.
15.已知正比例函数y=-2x与反比例函数y=K的图象的一个交点坐标
X
为(-1,2),则另一个交点的坐标为
三、解答题(本大题共5小题,共38分)
19.解方程:
(1.)x2+4x+l=0(用配方法);
v/v-c、-2=0.
/\
C是等边三角形,P为AABC内部一点,将AABP绕
点1与AACP'重合,如果AP=3,求PP'的长.
BC
21.已知:^ABC在直角坐标平面内,三个顶点的坐标分不为A(0,
3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位
F移4个单位长度得到的△A1B1C1,点C1的
言,在网格内画出4A2B2c2,使4A2B2c2与
:1,点C2的坐标是s
是平方单位.
22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售
出400千克.经市场调查发觉,在进货价不变的情形下,若每千克涨价1
元,日销售量将减少20千克.
(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?
(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到
实惠,每千克应涨价为多少元?
AB是。O的直径,点C,D在。O上,点E在。O外,
戋AE是。。的切线;
°,AB=6时,求劣弧蓝的长(结果保留口).
四、解答题(本大题共5小题,共50分)
24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,
让两个转盘分不自由转动一次,当转盘指针落在分界线上时,重新转动.
(1)请你画树状图或列表表示所有等可能的结果.
区域的颜色能配成绿色的概率.(黄、蓝两色混
25.如图,已知反比例函数y=K与一次函数y=x+b的图象在第一象限
X
相3
函数的表达式;
数图象的另一个交点B的坐标,并按照图象写出使
列函数值的x的取值范畴.
26.如图,口ABCD中,E是CD的延长线上一点,BE与AD交于点
F,E
^△CEB;
积为2,求口ABCD的面积.
28.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)
两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否
存在占C体管QCAC的周长最小?若存在,求出Q点的坐标;若不存在,
请岁
/:出物线上的第二象限上是否存在一点P,使4PBC
的^_5/!出点P的坐标及^PBC的面积最大值;若没有,
请岁:
2015-2016学年甘肃省嘉峪关六中九年级(上)期末数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列方程中,关于x的一元二次方程是()
A.x2+x+y=0B.1x2-3x+l=0C.(x+3)2=x2+2xD.x?J=2
【考点】一元二次方程的定义.”
【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;
(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四
个条件对四个选项进行验证,满足这四个条件者为正确答案.
【解答】解:A、方程含有两个未知数,故错误;
B、符合一元二次方程的定义,正确;
C、整理后方程二次项系数为0,故错误;
D、不是整式方程,故错误.
故选B.
【点评】此题要紧考查了一元二次方程的定义,判定一个方程是否是
一元二次方程应注意抓住5个方面:''化简后”;“一个未知数”;“未知数的
最高次数是2”;“二次项的系数不等于0";“整式方程”.
//\是AABC的外接圆,若NAOB=100。,则NACB的度
A.40°B.50°C.60°D.80°
【考点】圆周角定理.
【分析】已知。。是AABC的外接圆,ZAOB=100°,按照圆周角定
理可求得NACB的度数.
【解答】解::。。是AABC的外接圆,ZAOB=100°,
/.ZACB=1ZAOB=1X100°=50°.
22
故选B.
【点评】本题要紧考查了圆周角定理:在同圆或.等圆中,同弧或等弧
所对的圆周角是所对的圆心角的一半.
【考点】中心对称图形;轴对称图形.
【分析】按照轴对称图形及中心对称图形的定义,结合所给图形进行
判定即可.
【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项
错误;
B、是轴对称图形,也是中心对称图形,故本选项错误;
C、不是轴对称图形,是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选C.
【点评】本题要紧考查了中心对称图形与轴对称图形的概念,轴对称
图形的关键是查找对称轴,图形两部分沿对称轴折叠后可重合,中心对称
图形是要查找对称中心,图形旋转180度后与原图形重合,难度适中.
4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共
331万元.如果平均每月增长率为x,则由题意列方程应为()
A.100(1+x)2=331B.100+100X2x=331
C.100+100X3x=331D.100[1+(1+x)+(1+x)2]=331
【考点】由实际咨询题抽象出一元二次方程.
【专题】增长率咨询题.
【分析】按照增长率咨询题,一样增长后的量=增长前的量X(1+增长
率),关系式为:七月份月营业额+八月份月营业额+九月份月营业额=331,
把有关数值代入即可求解.
【解答】解:设平均每月的增长率为X,按照题意:八月份的月营业额
为100X(1+x),
九月份的月销售额在八月份月销售额的基础上增加x,
为100X(1+x)X(1+x),则列出的方程是:100+100(1+x)+100(1
+x)2=331,
100[1+(1+x)+(1+x)2]=331.
故选D.
【点评】此题要紧考查了求平均变化率的方法.若设变化前的量为a,
变化后的量为b,平均变化率为x,则通过两次变化后的数量关系为a(1
±x)2=b.
5.下列函数中,当x>0时,y随x的增大而减小的是()
A.y=x+lB.y=x2-1C.y=.-D.y=-(x-1)2+1
【考点】二次函数的性质;一次(数的性质;反比例函数的性质.
【分析】反比例函数、二次函数的增减性都有限制条件(即范畴),一
次函数当一次项系数为负数时,y随着x增大而减小.
【解答】解:A、函数y=2x+l的图象是y随着x增大而增大,故本选
项错误;
B、函数y=x2-l,当x<0时,y随着x增大而减小,当x>0时,y
随着x增大而增大,故本选项错误;
C、函数y=2L,当x<0或x>0时,y随着x增大而减小,故本选项正
确;
D、函数y=-(x-1)2+1,当x<l时,y随着x增大而增大,当x>
1时,y随着x增大而减小,故本选项错误;
故选C.
【点评】本题考查了二次函数、一次函数、反比例函数的增减性.关
键是明确各函数的增减性的限制条件.
6.若OP的半径为13,圆心P的坐标为(5,12),则平面直角坐标系
的原点。与。P的位置关系是()
A.在。P内B.在。P上C.在。P外D.无法确定
【考点】点与圆的位置关系;坐标与图形性质.
【专题】运算题.
【分析】按照P点坐标和勾股定理可运算出OP的长,然后按照点与圆
的位置关系的判定方法判定它们的关系.
【解答】解:...圆心P的坐标为(5,12),
OP=V?+12^13,
二.OP=r,
二.原点。在。P上.
故选B.
【点评】本题考查了点与圆的位置关系:.设。。的半径为r,点P到
圆心的距离OP=d,则有:点P在圆外=d>r;点P在圆上Qd=r;点P在
圆内=d<r.
7.若△ABCs^DEF,AABC与ADEF的相似比为1:2,则4ABC
与4DEF的周长比为()
A.1:4B.1:2C.2:1D.1:V2
【考点】相似三角形的性质.
【专题】压轴题.
【分析】本题可按照相似三角形的性质求解:相似三角形的周长比等
于相似比.
【解答】解:VAABC^ADEF,且相似比为1:2,
「.△ABC与ADEF的周长比为1:2.故选B.
【点评】本题要紧考查了相似三角形的性质:才目似三角形的周长比等
于相似比.
8.若函数y=mx2+(m+2)x+lm+1的图象与x轴只有一个交点,那么
m的值为()
A.0B.0或2c.2或-2D.0,2或-2
【考点】抛物线与x轴的交点.
【专题】分类讨论.
【分析】分为两种情形:函数是二次函数,函数是一次函数,求出即
可.
【解答】解:分为两种情形:
①当函数是二次函数时,
,函数y=mx2+(m+2)x+lm+1的图象与x轴只有一个交点,
△=(m+2)2-4m(lm+1)=0且mWO,
2
解得:m=±2,
②当函数是一次函数时,m=0,
现在函数解析式是y=2x+l,和x轴只有一个交点,
故选:D.
【点评】本题考查了抛物线与x轴的交点,根的判不式的应用,用了
分类讨论思想,题目比较好,然而也比较容易出错.
9.已知正六边形的边长为10cm,则它的边心距为()
A.当cmB.5cmC.5.75cmD.10cm
【考点】正多边形和圆.
【分析】已知正六边形的边长为10cm,欲求边心距,可通过边心距、
边长的一半和内接圆半径构造直角三角形,通过解直角三角形得出.
【解答】解:如图,
•.•在正六边形中,OA=OB=AB,
...在RtZXAOG中,OA=AB=10,NAOG=30°,
/一COS30°=10X24?^5方.
AGB
【点评】本题考查学生对正多边形的概念把握和运算的能力.解答此
题的关键是按照正六边形的性质,证出AOAB为正三角形,再利用正三角
形的性质解答.
10.如图是二次函数丫=2乂2+6乂+©图象的一部分,图象过点A(-3,0),
对称加工古孥一一1,给出四个结论:
ZM2a+b=0;③a+b+c>0;④若点B(-yl)、C(-1,
y2)/:L勺两点,则yl<y2,
*-H~4)
A.②④B.①④C.①③D.②③
【考点】二次函数图象与系数的关系.
【专题】压轴题.
【分析】由抛物线的开口方向判定a与。的关系,由抛物线与y轴的
交点判定c与0的关系,然后按照对称轴及抛物线与x轴交点情形进行推
理,进而对所得结论进行判定.
【解答】解:...抛物线的开口方向向下,
...抛物线与x轴有两个交点,
/.b2-4ac>0,即b2>4ac,
故①正确
由图象可知:对称轴x=-至=-1,
2a
2a-b=0,
故②错误;
•••抛物线与y轴的交点在y轴的正半轴上,
/.c>0
由图象可知:当x=l时y=0,
a+b+c=O;
故③错误;
由图象可知:若点B(-1,yl),C(-1,y2)为函数图象上的两点,
则yl<y2,
故④正确.
故选B
【点评】此题考查二次函数的性质,解答本题关键是把握二次函数丫=
ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛
物线与x轴交点的个数确定.
二、填空题(本大题共8小题,每小题4分,共32分)
11.从长度分不为2,4,6,7的四条线段中随机取三条,能构成三角
形的概率是1.
2
【考点】列表法与树状图法;三角形三边关系.
【专题】常规题型.
【分析】由从长度分不为2,4,6,7的四条线段中随机取三条,可能
的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形
的是2,6,7;.4,6,7;直截了当利用概率公式求解即可求得答案.
【解答】解:.•.从长度分不为2,4,6,7的四条线段中随机取三条,
可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三
角形的是2,6,7;4,6,7;
厂.能构成三角形的概率是:2=工
42
故答案为:A.
2
【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所
求情形数与总情形数之比.
12.若|b-1|+4T^=O,且一元二次方程kx2+ax+b=0有两个实数根,
则k的取值范畴是kW4且kWO.
【考点】根的判不式;非负数的性质:绝对值;非负数的性质:算术
平方根.
【专题】运算题.
【分析】第一按照非负数的性质求得a、b的值,再由二次函数的根的
判不式来求k的取值范畴.
【解答】解:「lb-1|+后亍0,
,b-1=0,后q=0,
.解得,b=l,a=4;
又「一元二次方程kx2+ax+b=0有两个实数根,
...△=a2-4kb,0且k#0,
即16—4k20,且kWO,
解得,kW4且kWO;
故答案为:kW4且kWO.
【点评】本题要紧考查了非负数的性质、根的判不式.在解答此题时,
注意关于x的一元二次方程的二次项系数不为零.
13.。0的半径为13cm,AB,CD是。O的两条弦,AB〃CD,AB=
24cm,CD=10cm.则AB和CD之间的距离7cn或17cm.
【考点】垂径定理;勾股定理.
【专题】分类讨论.
【分析】作OELAB于E,交CD于F,连结OA、OC,如图,按照平
行线的性质得OF,CD,再利用垂径定理得到AE=』AB=12,CF=1CD=5,
22
接着按照勾股定理,在RtZiOAE中运算出OE=5,在Rt^OCF中运算出O
F=12,然后分类讨论:当圆心。在AB与CD之间时,EF=OF+OE;当圆
心O不在AB与CD之间时,EF=OF-OE.
【解答】解:作OELAB于E,交CD于F,连结OA、OC,如图,
VAB#CD,
OF±CD,
.,.AE=BE=1AB=12,CF=DF=1CD=5,
22
在RtZXOAE中,VOA=13,AE=12,
*',OE=JOA2_AE^5,
在RtAOCF中,:OC=13,CF=5,
「OF=-CF"[2,
当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;
建生?左AB与CD之间时,EF=OF-0E=12-5=7;
(\'\\之间的距离为7cn或17cm.
【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,同时平
分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数
学咨询题.
14.将抛物线:y=x2-2x向上平移3个单位,再向右平移4个单位得
到的抛物线是y=(x-5)2+2或y=x2-10x+27.
【考点】二次函数图象与几何变换.
【专题】压轴题;几何变换.
【分析】先将抛物线的解析式化为顶点式,然后按照平移规律平移即
可得到解析式.
【解答】解:y=x2-2x=(x-1)2-1,
按照平移规律,向上平移3个单位,再向右平移4个单位得到的抛物
线是:
y=(x-5)2+2,
将顶点式展开得,y=x2-10x+27.
故答案为:y=(x-5)2+2或y=x2-10x+27.
【点评】要紧考查的是函数图象的平移,用平移规律“左加右减,上
加下减”直截了当代人函数解析式求得平移后的函数解析式.
15.已知正比例函数y=-2x与反比例函数y=K的图象的一个交点坐标
为(-1,2),则另一个交点的坐标为(1,-2)X.
【考点】反比例函数图象的对称性.
【分析】反比例函数的图象是中心对称图形,则与通过原点的直线的
两个交点一定关于原点对称.
【解答】解:按照中心对称的性质可知另一个交点的坐标是:(1,-2).
故答案为:(1,-2).
【点评】本题考查了反比例函数图象的中心对称性,较为简单,容易
把握.
(,示一圆柱形输水管的横截面,阴影部分为有水部分,如果
输公水面宽AB为8m,则水的最大深度CD为2m.
D
【考点】垂径定理的应用;勾股定理.
【分析】按照题意可得出A0=5cm,AC=4cm,由勾股定理得出CO的
长,则CD=OD-OC=AO-OC.
【解答】解:如图所示:,输水管的半径为5m,水面宽AB为8m,
水的最大深度为CD,
/.DO±AB,
A0=5m,AC=4m,
CO-..I^2_^2=3(m),
厂•水的最大深度CD为:CD=OD-OC=AO-0C=2m.
故答案是:2.
廿.“的是垂径定理的应用及勾股定理,按照题意构造出
为关键.
双曲线产X上,AB_Lx轴于B,且aAOB的面积S
x
△A
【考点】反比例函数系数k的几何意义.
【分析】先按照反比例函数图象所在的象限判定出k的符号,再按照S
△AOB=2求出k的值即可.
【解答】解:...反比例函数的图象在二、四象限,
/.k<0,
VSAA0B=2,
,|k|=4,
.♦.k=-4.
故答案为:-4.
【点评】本题考查的是反比例系数k的几何意义,即在反比例函数的
图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三
角形的面积是限,且保持不变.
2
r
知Rt^ABC是。。的内接三角形,其中直角边AC=6、B
丝是5.
©【考点】圆周角定理;勾股定理.
【分析】由NACB=90°可判定出AB为直径,利用勾股定理求出AB,
继而可得出。。的半径.
【解答】解:由题意得,NACB=90°,
...Rt^ABC是。。的内接三角形,
/.AB是。0的直径,
在RtaABC中,AB=〃C2+B产I。,
则。O的半径为5.
故答案为:5.
【点评】本题考查了圆周角定理的知识,解答本题的关键是把握:90°
的圆周角所对的弦是直径.
三、解答题(本大题共5小题,共38分)
19.解方程:
(1)x2+4x+l=0(用配方法);
(2)x(x-2)+x-2-0.
【考点】解一元二次方程-因式分解法;解一元,二次方程-配方法.
【分析】(1)移项,配方,开方,即可得出两个一元一次方程,求出
方程的解即可;
(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【解答】解:(1)x2+4x+l=0,
x2+4x=-1,
x2+4x+4=-1+4,
(x+2)2=3,
x+2=+[s,
xl=-2+。x2=-2一娟;
(2)x(x-2)+x-2=0,
(x-2)(x+1)=0,
x-2-0,x+l=0,
xl=2,x2=-1.
【点评】本题考查了解一元二次方程的应用,解(1)小题的关键是能
正确配方,解(2)小题的关键是能把一元二次方程转化成一元一次方程,
C是等边三角形,P为AABC内部一点,将aABP绕
与LACP'重合,如果AP=3,求PP,的长.
【考点】等边三角形的判定与性质;旋转的性质.
【分析】按照旋转的性质得出AP=AP,,再按照旋转的角度为60。和
等边三角形的判定得出AAPP'为等边三角形;即可按照等边三角形的性质
得出结论.
【解答】解:...△ABC是等边三角形,
二.NBAC=60°
:△ABP绕A点逆时针旋转后与AACP'重合,
.,.AP=AP',NBAP=NCAP',
二.NBAC=/BAP+NCAP=NCAP+NCAP'=NPAP'=60°,
「.△APP'为等边三角形,
二.PP'=AP=3.
【.点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分
不相等,图形的大小、形状都不改变.同时考查了等边三角形的判定和性
质.
21.已知:AABC在直角坐标平面内,三个顶点的坐标分不为A(0,
3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位
F移4个单位长度得到的△A1B1C1,点C1的
*】,在网格内画出4A2B2c2,使4A2B2c2与
:1,点C2的坐标是(1,0);
是10平方单位.
【考点】作图-位似变换;作图-平移变换.
【专题】作图题.
【分析】(1)利用平移的性质得出平移后图象进而得出答案;
(2)利用位似图形的性质得出对应点位置即可;
(3)利用等腰直角三角形的性质得出4A2B2c2的面积.
【解答】解:(1)如图所示:C1(2,-2);
故答案为:(2,-2);
(2)如图所示:C2(1,0);
故答案为:(1,0);
(3);A2c22=20,B2C2=20,A2B22=40,
2
【点评】此题要紧考查了位似图形的性质以及平移的性质和三角形面
积求法等知识,得出对应点坐标是解题关键.
22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售
出400千克.经市场调查发觉,在进货价不变的情形下,若每千克涨价1
元,日销售量将减少20千克.
(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?
(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到
实惠,每千克应涨价为多少元?
【考点】一元二次方程的应用;二次函数的应用.
【分析】本题的关键是按照题意列出一元二次方程,再求其最值.
【解答】解(1)设涨价x元时总利润为y,
则y=(10+x)(400-20x)
=-20x2+400x+4000
=-20(x-5)2+4500
当x=5时,y取得最大值,最大值为4500.
(2)设每千克应涨价x元,则(10+x)(400-20x)=4420
解得x=3或x=7,
为了使顾客得到实惠,因此x=3.
【点评】本题考查了二次函数的应用及一元二次方程的应用,求二次
函数的最大(小)值有三种方法,第一种可由图象直截了当得出,第二种
是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对
值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+l等用
配方法求解比较简单.
AB是。O的直径,点C,D在。O上,点E在。O外,
AE是。O的切线;
,AB=6时,求劣弧竟的长(结果保留口).
【考点】切线的判定;弧长的运算.
【专题】证明题.
【分析】(1)按照圆周角定理可得NACB=90°,进而可得NCBA+N
CAB=90°,由NEAC=NB可得NCAE+NBAC=90。,从而可得直线AE
是。O的切线;
(2)连接CO,运算出AO长,再利用圆周角定理可得NAOC的度数,
然后利用弧长公式可得答案.
【解答】解:(1)...AB是。。的直径,
二.NACB=90°,
二.NCBA+NCAB=90°,
VZEAC=ZB,
二.NCAE+NBAC=90°,
即BA±AE.
二.AE是的切线.
(2)连接CO,
•.•AB=6,
【点评】此题要紧考查了切线的判定和弧长运算,关键是把握切线的
判定定理:通过半径的外端且垂直于这条半径的直线是圆的切线.弧长公
式:上迺(弧长为1,圆心角度数为n,圆的半径为R).
四、解答题(本大题共5小题,共50分)
24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,
让两个转盘分不自由转动一次,当转盘指针落在分界线上时,重新转动.
,主心封心工或列表表示所有等可能的结果.
〜区域的颜色能配成绿色的概率.(黄、蓝两色混
合2、/黄
【考点】列表法与树状图法.
【分析】(1)第一按照题意画出树状图,然后由树状图求得所有等可
能的结果;
山m用F树技四m去得两个指针落在区域的颜色能配成绿色
xAx
黑红黄蓝黑红黄蓝黑红黄蓝
则共有12种等可能的结果;
(2)...两个指针落在区域的颜色能配成绿色的有2种情形,
二.两个指针落在区域的颜色能配成绿色的概率为:2=工
【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概
率=所求情形数与总情形数之比.
25.如图,已知反比例函数y=X与一次函数y=x+b的图象在第一象限
相交于点A(1,-k+4)
(1)试确定这两个函数的表达式;
JV
-o,尸一M数图象的另一个交点B的坐标,并按照图象写出使
一"一列函数值的X的取值范畴,
【考点】反比例函数与一次函数的交点咨询题.
【分析】(1)把A(l,-k+4)代入解析式y=K,即可求出k的值;把
求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求
出这两个函数的表达式;
(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一
次函数的值小于反比例函数的值时,直线在双曲线的下方,直截了当按照
图象写出一次函数的值小于反比例函数的值x的取值范畴.
【解答】解:(1).•.已知反比例函数y=K通过点A(1,-k+4),
X
-k+4=K,即-k+4=k,
1
k=2,
/.A(1,2),
,..一次函数y=x+b的图象通过点A(J,2),
/.2=1+b,
b=l,
.二反比例函数的表达式为y=Z
一次函数的表达式为y=x+l.
fy=x+l
(2)由,2,
y=-
消去y,'得Q+x-2=0.
即(x+2)(x-1)=0,
/.x=-2或x=l.
y=-1或y=2.
.••产-2或尸.
y=_1Iy=2
...点B在第三象限,
...点B的坐标为(-2,-1),
由图象可知,当一次函数的值小于反比例函数值时,X的取值范畴是X
<-2或0<x<l.
【点评】本题要紧考查了待定系数法求反比例函数与一次函数的解析
式和反比例函数丫=上中k的几何意义.那个地点体现了数形结合的思想,做
此类题一定要正确确白得k的几何意义.
26.如图,口ABCD中,E是CD的延长线上一点,BE与AD交于点
F'/
月匕//
/~/D^ACEB;
/积为2,求口ABCD的面积.
BC
【考点】相似三角形的判定与性质;三角形的面积;平行四边形的性
质.
【专题】几何综合题.
【分析】(1)要证△ABFs^CEB,需找出两组对应角相等;已知了平
行四边形的对角相等,再利用AB〃CD,可得一对内错角相等,则可证.
(2)由于△DEFs^EBC,可按照两三角形的相似比,求出△EBC的
面积,也就求出了四边形BCDF的面积.同理可按照△DEFs^AFB,求
出AAFB的面积.由此可求出口ABCD的面积.
【解答】(1)证明:...四边形ABCD是平行四边形
二.NA=NC,AB〃CD
二.NABF=NCEB
/.△ABF^ACEB
(2)解:•.•四边形ABCD是平行四边形
,AD〃BC,AB平行且等于CD
/.ADEF^ACEB,ADEF^AABF
VDE=1flCD
•SADEF_/DE、21SADEF_/DE、21
••----—l)——9------—l)——
SACEBEC9SAABFAB4
SADEF=2
SACEB=18,SAABF=8,
二.S四边形BCDF=SABCE-SADEF=16
/.S四边形ABCD=S四边形BCDF+S^ABF=16+8=24.
【点评】本题考查了平行四边形的性质、相似三角形的判定和性质等
知识.
【考点】切线的性质;圆周角定理;弧长的运算.
【分析】(1)连接AE,求出AELBC,按照等腰三角形性质求出即可;
(2)求出NABC,求出NABF,即可求出答案;
(3)求出NAOD度数,求出半径,即可求出答案.
【解答】(1)证明:连接AE,
「AB是。0直径,
二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中生物教学中的人工智能辅助下的学习资源智能重组研究教学研究课题报告
- 2025年新疆西天山国家级自然保护区管理中心面向社会引进高层次人才备考题库及参考答案详解
- 2025年西安雁塔区长延堡社区卫生服务中心招聘备考题库及答案详解一套
- 天津西青区2024-2025学年九年级上学期期末考试化学试卷(含答案)
- 2026年度中共义乌市委党校公开招聘高层次人才备考题库及1套完整答案详解
- 2型糖尿病合并肾病多学科诊疗策略优化
- 2025年泉州市丰泽区云山实验小学语文顶岗教师招聘备考题库及参考答案详解
- 2025年西安交通大学电信学部管理辅助人员招聘备考题库有答案详解
- 2025年全国妇联所属在京事业单位公开招聘备考题库含答案详解
- 杭州地铁运营有限公司2026届校园招聘备考题库及答案详解一套
- 工控网管理制度
- 液氧泄露应急预案演练方案
- 测量年终工作总结
- 博士论文写作精解
- 10年宝马320i使用说明书
- 洛必 达法则课件
- NB/T 11431-2023土地整治煤矸石回填技术规范
- 演讲与口才-形成性考核二-国开(HB)-参考资料
- 水稻种植天气指数保险条款
- FZ∕T 12013-2014 莱赛尔纤维本色纱线
- “超级电容器”混合储能在火电厂AGC辅助调频中的应用实践分析报告-培训课件
评论
0/150
提交评论