湖南省名校2023-2024学年高一下数学期末学业水平测试试题含解析_第1页
湖南省名校2023-2024学年高一下数学期末学业水平测试试题含解析_第2页
湖南省名校2023-2024学年高一下数学期末学业水平测试试题含解析_第3页
湖南省名校2023-2024学年高一下数学期末学业水平测试试题含解析_第4页
湖南省名校2023-2024学年高一下数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省名校2023-2024学年高一下数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A. B.C. D.2.设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.3.已知函数f:R+→R+满足:对任意三个正数x,y,z,均有f().设a,b,c是互不相等的三个正数,则下列结论正确的是()A.若a,b,c是等差数列,则f(a),f(b),f(c)一定是等差数列B.若a,b,c是等差数列,则f(),f(),f()一定是等差数列C.若a,b,c是等比数列,则f(a),f(b),f(c)一定是等比数列D.若a,b,c是等比数列,则f(),f(),f()一定是等比数列4.若偶函数在上是增函数,则()A. B.C. D.不能确定5.在等差数列中,若,则的值为()A.15 B.21 C.24 D.186.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.7.如图是正方体的平面展开图,则在这个正方体中:①与平行②与是异面直线③与成角

④与是异面直线以上四个命题中,正确命题的个数是()A.1 B.2 C.3 D.48.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.9.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.10.如图,在下列四个正方体中,,,,,,,为所在棱的中点,则在这四个正方体中,阴影平面与所在平面平行的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是等差数列的前项和,若,,则公差(___).12.已知为钝角,且,则__________.13.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.14.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为___________。15.已知数列的前项和为,则其通项公式__________.16.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩不低于分的评定为“优秀”.(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).18.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.19.在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.20.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.21.设数列满足(,),且,.(1)求和的值;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解.【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,所以该正十二边形的面积为,由几何概型的概率计算公式,可得所求概率,故选D.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.2、B【解析】由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.3、B【解析】

令,,,若是等差数列,计算得,进而可得结论.【详解】由题意,,令,,,若是等差数列,则所以,即,故,,成等差数列.若是等比数列,,,与,,既不能成等差数列又不等成等比数列.故选:B.【点睛】本题考查抽象函数的解析式,等差数列的等差中项的性质,属于中档题.4、B【解析】

根据偶函数性质与幂函数性质可得.【详解】偶函数在上是增函数,则它在上是减函数,所以.故选:B.【点睛】本题考查幂函数的性质,考查偶函数性质,属于基础题.5、D【解析】

利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。6、B【解析】

写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.7、B【解析】

把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,与异面且垂直,故①错误;与平行,故②错误;连接,则,为与所成角,连接,可知为正三角形,则,故③正确;由异面直线的定义可知,与是异面直线,故④正确.∴正确命题的个数是2个.故选:B.【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.8、D【解析】

分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.9、B【解析】

根据题意,得到数列为等差数列,通过首项和公差,得到通项.【详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【点睛】本题考查求等差数列的通项,属于简单题.10、A【解析】

根据线面平行判定定理以及作截面逐个分析判断选择.【详解】A中,因为,所以可得平面,又,可得平面,从而平面平面B中,作截面可得平面平面(H为C1D1中点),如图:C中,作截面可得平面平面(H为C1D1中点),如图:D中,作截面可得为两相交直线,因此平面与平面不平行,如图:【点睛】本题考查线面平行判定定理以及截面,考查空间想象能力与基本判断论证能力,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.12、.【解析】

利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.13、70【解析】

构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【点睛】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。14、3;【解析】

由三视图还原几何体,根据垂直关系和勾股定理可求得各棱长,从而得到最长棱的长度.【详解】由三视图可得几何体如下图所示:其中平面,,,,,,四棱锥最长棱为本题正确结果:【点睛】本题考查由三视图还原几何体的相关问题,关键是能够准确还原几何体中的长度和垂直关系,从而确定最长棱.15、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.16、【解析】

求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【点睛】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)该校数学平均分为.【解析】

(1)计算后两个矩形的面积之和,可得出结果;(2)将每个矩形底边中点值乘以相应矩形的面积,再将这些积相加可得出该校数学平均分.【详解】(1)从该校随机选取一名学生,成绩不低于分的评定为“优秀”的频率为,所以,数学成绩评定为“优秀”的概率为;(2)估计该校数学平均分.【点睛】本题考查频率分布直方图频率和平均数的计算,解题时要熟悉频率和平均数的计算原则,考查计算能力,属于基础题.18、(1)2x+y-2=0;(2)x2+y2+2x+2y-8=0【解析】

(1)根据高与底边所在直线垂直确定斜率,再由其经过点,从而由点斜式得到高所在直线方程,再写成一般式.(2)设出的外接圆的一般方程,将三个顶点坐标代入得到关于的方程组,从而求出外接圆的方程.【详解】(1)直线AB的斜率为,AB边上的高所在直线的斜率为-2,则AB边上的高所在直线的方程为y+2=-2(x-2),即2x+y-2=0(2)设△ABC的外接圆的方程为x2+y2+Dx+Ey+F=0由,解之可得故△ABC的外接圆的方程为x2+y2+2x+2y-8=0【点睛】主要考查了直线方程与圆的方程的求解,属于基础题.19、(1)(2)【解析】

(1)先后利用正弦定理余弦定理化简得到,即得B的大小;(2)设,则,所以,利用余弦定理求出m的值,再求的面积.【详解】解:(1)因为,由正弦定理,得,即.由余弦定理,得.因为,所以.(2)因为,所以.设,则,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)或;(2)或.【解析】

(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论