人教版高一下学期期中考试数学试卷及答案解析(共五套)_第1页
人教版高一下学期期中考试数学试卷及答案解析(共五套)_第2页
人教版高一下学期期中考试数学试卷及答案解析(共五套)_第3页
人教版高一下学期期中考试数学试卷及答案解析(共五套)_第4页
人教版高一下学期期中考试数学试卷及答案解析(共五套)_第5页
已阅读5页,还剩129页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A. B. C. D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A. B. C. D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010i C.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30° B.45° C.60° D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cosC=c(2cosB﹣cosA),△ABC的面积为a2sin,则C=()A. B. C. D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60° B.直线B1C与平面AD1C所成的角为60° C.直线B1C与直线AD1所成的角为90° D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6π B.8π C.12π D.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A. B. C. D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A. B. C. D.11.下列说法正确的有()A.任意两个复数都不能比大小 B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0 C.若z1,z2∈C,且z12+z22=0,则z1=z2=0 D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A. B. C.向量与向量的夹角是60° D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A. B. C. D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A. B. C. D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010i C.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+……+2020i2019.∴iS=2i2+3i3+……+2020i2020.则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30° B.45° C.60° D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cosC=c(2cosB﹣cosA),△ABC的面积为a2sin,则C=()A. B. C. D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sinB=2sinA;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cosC=c(2cosB﹣cosA),∴(sinA﹣2sinB)cosC=sinC(2cosB﹣cosA),即sinAcosC+sinCcosA=2(sinBcosC+cosBsinC),∴sin(A+C)=2sin(B+C),即sinB=2sinA.∵△ABC的面积为a2sin,∴S=bcsinA=a2sin,根据正弦定理得,sinB•sinC•sinA=sin2A•sin,化简得,sinB•sincos=sinA•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60° B.直线B1C与平面AD1C所成的角为60° C.直线B1C与直线AD1所成的角为90° D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6π B.8π C.12π D.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得VABCDEF=VC﹣EFBD+VA﹣EFBD=2VA﹣EFBD,再由多面体ABCDEF的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以VABCDEF=VC﹣EFBD+VA﹣EFBD=2VA﹣EFBD=2•SEFBD•CO'=•a•b•a=a2b,由题意可得VABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A. B. C. D.【答案】BC【分析】由已知利用余弦定理整理可得cosA=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bccosA,所以b2+bc=b2+c2﹣2bccosA,整理可得:c=b(1+2cosA),可得:cosA=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A. B. C. D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小 B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0 C.若z1,z2∈C,且z12+z22=0,则z1=z2=0 D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A. B. C.向量与向量的夹角是60° D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C(2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tanx在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知复平面内,(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A. B. C. D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣ C. D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A. B.2 C.2 D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2 B.R2 C.R2 D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.π B.π C.π D.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A. B. C. D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则= B.已知≠,且•=•,则= C.若=,=,则= D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A. B. C. D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1C B.直线B1D⊥平面A1BC1 C.异面直线AD1与OC1所成角为 D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cosA=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知复平面内,(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A. B. C. D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣ C. D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A. B.2 C.2 D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y=3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2 B.R2 C.R2 D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.π B.π C.π D.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,∴六面体的体积是,由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设丸子的半径为R,则,解得,∴丸子的体积的最大值为.故选:A.【知识点】棱柱、棱锥、棱台的体积8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A. B. C. D.【答案】D【分析】根据题意画出图形,结合图形利用圆台的母线长表示出半球的半径r,计算圆台的侧面积,利用导数求得侧面积取得最大值时对应的母线长和半球的半径,从而求得圆台母线与底面所成角的余弦值.【解答】解:如图1所示,设BC=x,CO′=r,作CF⊥AB于点F,延长OO′交球面于点E,则BF=1﹣r,OO′=CF==.由圆的相交弦定理和图2知,CO′•O′E•O′H=(1+OO′)•(1﹣OO′),即r2=(1+)•(1﹣),解得r=1﹣,所以圆台的侧面积为S侧=π•(1+1﹣)•x(0<x<);求导数得S侧′=π(2﹣x2),令S侧=0,得出当x=时S侧取得最大值,所以当x=BC=时,r=1﹣=,则BF=1﹣r=;在轴截面中,∠OBC为圆台母线与底面所成的角,在Rt△CFB中,cos∠OBC==.故选:D.【知识点】旋转体(圆柱、圆锥、圆台)二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则= B.已知≠,且•=•,则=C.若=,=,则= D.若=,则||=||且∥【答案】AB【分析】根据向量的概念与向量的模的概念逐一分析各个选项即可得解.【解答】解:向量由两个要素方向和长度描述,A错误;若∥,且与垂直,结果成立,当不一定等于,B错误;若=,=,由向量的定义可得=,C正确;相等向量模相等,方向相同,D选项正确.故选:AB.【知识点】向量的概念与向量的模10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i【答案】BC【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.【解答】解:由=,得z=,∴z的实部为1;=1+i;z2=(1﹣i)2=﹣2i.故选:BC.【知识点】复数的运算11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A. B. C. D.【答案】AB【分析】对于A:直接利用三角形法则的应用和线性运算的应用求出结果.对于B:利用三角形法则的应用和线性运算的应用求出结果.对于C:利用平行线分线段成比例和三角形法则和线性运算的应用求出结果.对于D:直接利用平行线成比例的应用求出结果.【解答】解:在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,如图所示:根据三角形法则:对于A:,故选项A正确.对于B:E,F分别为线段AD,CD的中点,所以,故选项B正确.对于C:过E作EH∥DC,所以,所以,故,整理得,所以,即=,故选项C错误.对于D:根据平行线分线段成比例定理,点B、G、D共线,故选项D错误.故选:AB.【知识点】平面向量的基本定理12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1C B.直线B1D⊥平面A1BC1 C.异面直线AD1与OC1所成角为 D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q【答案】BD【分析】根据面面平行和垂直的性质、判定,结合图形,从而可判断选项的正误.【解答】解:在正方体ABCD﹣A1B1C1D1中,B1C⊥BC1,B1C⊥AB,BC1∩AB=B,∴B1C⊥平面ABC1D1,∵只有当E运动到线段B1C的中点时,AE⊥B1C才成立,故A错误.连接B1D1,∵在正方体ABCD﹣A1B1C1D1中,DD1⊥平面A1B1C1D1,∴DD1⊥A1C1,∵BD1⊥A1C1,BD1∩DD1=D1,∴A1C1⊥平面BDD1B1,∴A1C1⊥B1D,同理可得BC1⊥B1D,又A1C1∩BC1=C1,∴直线B1D⊥平面A1BC1,故选项B正确.连接BD,BC1,则AD1∥BC1,∴∠OC1B(或其补角)即为异面直线AD1与OC1所成的角.因为正方体的棱长为2,则BC1=2,OB=,在Rt△C1OB中,OC1=,∴cos∠OC1B==,∴∠OC1B=,故选项C错误.由题意知,在正方体ABCD﹣A1B1C1D1中,P为棱CC1上的动点,Q为棱AA1的中点,直线m为平面BDP与平面B1D1P的交线,且BD∥B1D1,∴m∥B1D1.∵m⊄平面B1D1Q,∴m∥平面B1D1Q,故选项D正确.故选:BD.【知识点】空间中直线与平面之间的位置关系、异面直线及其所成的角、直线与平面垂直、命题的真假判断与应用三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.【答案】2或3【分析】根据题意,由向量平行的坐标表示方法可得(m﹣4)m﹣(m﹣6)=0,变形解可得m的值,即可得答案.【解答】解:根据题意,知向量=(m,1),=(m﹣6,m﹣4),若∥,则有(m﹣4)m﹣(m﹣6)=0,变形可得:m2﹣5m+6=0,解可得m=2或3,故答案为:2或3.【知识点】平面向量共线(平行)的坐标表示14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.【分析】设圆锥的母线长为l,底面半径为r,根据题意列出方程组求出l和r的值,再计算圆锥的高轴截面面积.【解答】解:设圆锥的母线长为l,底面半径为r,由题意得,解得l=9,r=3;所以圆锥的高为h===6,所以圆锥的轴截面面积为S=×=18.故答案为:18.【知识点】旋转体(圆柱、圆锥、圆台)、扇形面积公式15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.【分析】由向量的和差运算求出数量积•的表达式,再由||的值为1,可得﹣﹣=0,再由(+﹣)2的展开可得|+﹣|=3,再由绝对值不等式的定理可得||的取值范围,求出其最大值.【解答】解:由题意=(﹣)•(﹣)=﹣﹣+1=1,所以﹣﹣=0,由(+﹣)2=+2+2+2(﹣﹣)=9,所以|+﹣|=3,又|+|﹣||≤|+﹣|≤|+|+||,所以2≤|+|≤4,又|+|2+|﹣|2=2(||2+||2)=16,所以0≤|﹣|,即0≤||,||的最大值是2,故答案为:2.【知识点】平面向量数量积的性质及其运算16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.【分析】将三棱锥A﹣BCD的直观图还原,取CD中点N,连接AN,BN,可知ANB为二面角A﹣CD﹣B的平面角,设CD=a(0<a<2),根据题意由余弦定理建立关于a的方程,解出即可求得CD的值,取AB的中点O,连接OM,OC,则∠OMC为直线AD与直线CM所成的角或其补角,求出相关边的长度,利用余弦定理直接求解即可.【解答】解:将三棱锥A﹣BCD的直观图还原,则BC=BD=AC=AD=1,,取CD中点N,连接AN,BN,则AN⊥CD,BN⊥CD,故∠ANB为二面角A﹣CD﹣B的平面角,设CD=a(0<a<2),则,故,又二面角A﹣CD﹣B的余弦值为,故,解得,即;取AB的中点O,连接OM,OC,易知OM∥AD,所以∠OMC为直线AD与直线CM所成的角或其补角,易知,所以,∴直线AD与直线CM所成角的余弦值为.故答案为:;.【知识点】二面角的平面角及求法、异面直线及其所成的角四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.【分析】(1)设=λ=(2λ,0),由||=1可得2λ=1,解可得λ的值,即可得答案,(2)根据题意,由数量积的计算公式可得•=﹣1,设=(x,y),由数量积的坐标计算公式可得•=2x=﹣1,即可得x的值,由向量模的计算公式可得y的值,即可得的坐标,由向量的坐标计算公式计算可得答案.【解答】解:(1)根据题意,与同向,且,设=λ=(2λ,0),又由||=1,则有2λ=1,即λ=,则=(1,0);(2),则||=2,若与的夹角为120°,则•=||||cos120°=2×1×cos120°=﹣1,设=(x,y),则•=2x=﹣1,则x=﹣,又由||=1,则x2+y2=1,解可得y=±,故=(,±),则+=(,±).【知识点】平面向量数量积的性质及其运算、数量积表示两个向量的夹角18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cosA=﹣.(1)求c;(2)求cos2B的值.【分析】(1)由余弦定理即可求得c的值;(2)先由同角三角函数的平方关系求得sinA的值,再由正弦定理求出sinB的值,最后根据cos2B=1﹣2sin2B,得解.【解答】解:(1)由余弦定理知,a2=b2+c2﹣2bccosA,即48=36+c2﹣2×6×c×(﹣),整理得,c2+4c﹣12=0,解得c=2或﹣6(舍负),故c=2.(2)∵cosA=﹣,且A∈(0,π),∴sinA==,由正弦定理知,=,即=,∴sinB=,∴cos2B=1﹣2sin2B=﹣.【知识点】余弦定理19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.【分析】(Ⅰ)设z1=x+yi(x,y∈R),则z2=﹣x+yi,由题意列方程组求得x,y的值,则答案可求;(Ⅱ)求得z1,代入,利用复数代数形式的乘除运算化简化简,再由复数相等的条件求解.【解答】解:(Ⅰ)设z1=x+yi(x,y∈R),则z2=﹣x+yi,∵z1(1﹣i)=z2(1+i),|z1|=,∴,解得或,即z1=1﹣i或z1=﹣1+i;(Ⅱ)∵z1的虚部大于零,∴z1=﹣1+i,则,则有,∴,解得.【知识点】复数的运算20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.【分析】(Ⅰ)利用待定系数法,结合复数相等进行求解即可(Ⅱ)设z=a+bi,结合ω是实数求出a,b的取值范围,结合复数的有关概念进行证明求解即可.【解答】解:(Ⅰ)原方程等价为|z|2+(z+)i==1﹣i,设z=x+yi,x,y∈R,代入方程整理得x2+y2+2xi=1﹣i,得得,即z=﹣±i.(Ⅱ)(1)z=a+bi,a,b∈R且b≠0,则ω=z+=a+bi+=(a+)+(b﹣)i,∵ω=z+是实数,∴b﹣=0,得1﹣=0,即a2+b2=1,即|z|=1,则ω=z+=2a∈(﹣1,2),∴a∈(﹣,1).(2)证明:===,由(1)知a2+b2=1,则μ=i,∵a∈(﹣,1).b≠0,∴μ是纯虚数.(3)ω﹣μ2=2a+=2a+=2a﹣=2a﹣1+=2[(a+1)+]﹣3,∵a∈(﹣,1),∴a+1>0,∴(a+1)+≥2=2,当且仅当a+1=,即a=0时取等号,即ω﹣μ2=2[(a+1)+]﹣3≥2×2﹣3=1,即ω﹣μ2的最小值为1【知识点】复数的运算21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)【分析】(1)由V=S△ABC•A1A,即可得解;(2)易知∠MBC或其补角即为所求,再在△MBC中,由余弦定理求得cos∠MBC的值,即可.【解答】解:(1)∵,∴V=S△ABC•A1A=×4=2.(2)∵BC∥B1C1,∴∠MBC或其补角是异面直线BM与B1C1所成的角,在△MBC中,BM=CM=,BC=,由余弦定理得,cos∠MBC==,∴∠MBC=arccos,故异面直线BM与B1C1所成的角为.【知识点】棱柱、棱锥、棱台的体积、异面直线及其所成的角22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.【分析】(1)根据面面平行的性质即可得到EF∥l,再结合线线平行的传递性即可证明结论;(2)(i)先根据直线B1D⊥平面EFP得到B1D⊥EP,进而得到P是DB1的中点,然后依次求出三棱锥的四个面的面积再相加即可得到三棱锥B1﹣EFP的表面积;(ii)①根据公理“一条直线上的两点在一个平面内,那么这条直线在此平面内”作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线即可;②根据NEFP四点共面,且三角形PNE与三角形PEF面积相等,那么三棱锥Q﹣EFP的体积等于三棱锥P﹣ENQ的体积,直接利用三棱锥的体积公式求解即可.【解答】解:(1)在正方体ABCD﹣A1B1C1D1中,因为平面ABB1A1∥平面DCC1D1,平面EFP∩平面ABB1A1=EF,所以EF∥l,因为点E、F分别是棱AA1、AB的中点,所以EF∥A1B,所以l∥A1B.(2)(i)因为直线B1D⊥平面EFP,EP⊂平面EFP,所以B1D⊥EP,又因为△DAE≌△B1A1E,所以DE=B1E,所以DP=B1P,因为,×,,所以三棱锥B1﹣EFP的表面积为.(ii)作图步骤如下:连接GE,过点G作GH⊥DC于点H,连接HA并延长交GE的延长线于点I,连接IM并延长交AB于点J交DC的延长线于点K,再连接GK交CC1于点S,连接MS并延长交B1C1的延长线于点R,连接RG并延长交A1D1于点Q,再连接EQ,GS,EJ,则图中EQ,QG,GS,SM,MJ,JE即为平面EGM与正方体各个面的交线.设BJ=CK=x,由题知2AJ=HC+CK=3+x,所以,所以,解得,因为,∵MC=2,∴,所以,如上图,设N为线段A1D1的中点,可证点N在平面PEF内,且三角形PNE与三角形PEF面积相等,所以,三棱锥Q﹣EFP的体积=三棱锥Q﹣ENP的体积=三棱锥P﹣ENQ的体积=,所以三棱锥Q﹣EFP的体积为.【知识点】平面与平面垂直、棱柱、棱锥、棱台的体积、棱柱、棱锥、棱台的侧面积和表面积人教版高一下学期期中考试数学试卷(三)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知直线a在平面α外,则()A.a∥α B.直线a与平面α至少有一个公共点 C.a∩α=A D.直线a与平面α至多有一个公共点2.在△ABC中,,.若点D满足,则=()A. B. C. D.3.设E为△ABC所在平面内一点,若=2,则()A.=+ B.=﹣ C.=+ D.=﹣4.复数z满足z(1+i)=1﹣ai,且z在复平面内对应的点在第四象限,则实数a的取值范围是()A.[﹣1,1] B.(﹣∞,﹣1) C.(﹣1,1) D.(1,+∞)5.在棱长为4的正方体ABCD﹣A1B1C1D1中,点M为B1C1的中点,过点D作平面a使a⊥BM,则平面a截正方体所得截面的面积为()A. B. C. D.6.已知z=x+yi,x,y∈R,i是虚数单位.若复数+i是实数,则|z|的最小值为()A.0 B. C.5 D.7.已知平面向量,,满足||=2|﹣|=2|﹣|=2||=2,则•的取值范围是()A.[1,2] B. C. D.8.如图所示,在正方体ABCD﹣A1B1C1D1中,E为棱AA1的上的一点,且A1E=2EA=2,M为侧面ABB1A1上的动点.若C1M∥面ECD1,动点M形成的图形为线段PQ,则三棱锥B1﹣PQC1的外接球的表面积是()A.27π B.11π C.14π D.17π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.△ABC是边长为2的等边三角形,已知向量满足,则下列结论正确的是()A.是单位向量 B. C. D.10.四边形ABCD中,AB∥CD,∠A=90°,AB=2AD=2DC,,则下列表示正确的是()A. B. C. D.11.如图,直角梯形ABCD,AB∥CD,AB⊥BC,BC=CD=AB=1,E为AB中点,以DE为折痕把ADE折起,使点A到达点P的位置,且PC=.则()A.平面PED⊥平面EBCD B.二面角P﹣DC﹣B的大小为 C.PC⊥ED D.PC与平面PED所成角的正切值为12.如图,正方体ABCD﹣A1B1C1D1的棱长为a,线段B1D1上有两个动点E,F,且EF=a,以下结论正确的有()A.AC⊥BE B.点A到△BEF的距离为定值 C.三棱锥A﹣BEF的体积是正方体ABCD﹣A1B1C1D1体积的 D.异面直线AE,BF所成的角为定值三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知平面向量,,其中,,,则=;若t为实数,则的最小值为.14.在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9.若=m+(﹣m)(m为常数),则CD的长度是.15.已知复数z=x+yi(x,y∈R)满足|z﹣1|=x,那么z在复平面上对应的点(x,y)的轨迹方程为﹣;|z|min=.16.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为;若该六面体内有一球,则该球体积的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知向量=(2sinA,1),=(sinA+cosA,﹣3),⊥,其中A是△ABC的内角.(1)求角A的大小;(2)若角A,B,C所对的边分别为a,b,c,且a=,>0,求b+c的取值范围.18.如图,在△OAB中,点P为直线AB上的一个动点,且满足=,Q是OB中点.(Ⅰ)若O(0,0),A(1,3),B(,0),且=,求的坐标和模?(Ⅱ)若AQ与OP的交点为M,又=t,求实数t的值.19.已知复数z1=+(a2﹣1)i,z2=2+2(a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;(Ⅱ)若虚数z1是实系数一元二次方程4x2﹣4x+m=0的根,求实数m值.20.已知复数z满足z=(﹣1+3i)(1﹣i)﹣4.(1)求复数z的共轭复数;(2)若ω=z+ai,且复数ω对应向量的模不大于复数z所对应向量的模,求实数a的取值范围.21.如图所示,在四棱锥E﹣ABCD中,四边形ABCD是直角梯形,AB=AE=BC=AD=1,BC∥AD,AE⊥平面ABCD,∠BAD=90°,N为DE的中点.(1)求证:NC∥平面EAB;(2)求二面角A﹣CN﹣D的余弦值.22.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,AB=2,PD⊥平面ABCD,PB与底面ABCD所成的角为45°,过AD的平面分别与PB,PC交于点E,F.(Ⅰ)求证:EF⊥DC;(Ⅱ)若二面角P﹣AD﹣E所成角的余弦值为,求的值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知直线a在平面α外,则()A.a∥α B.直线a与平面α至少有一个公共点 C.a∩α=A D.直线a与平面α至多有一个公共点【答案】D【分析】由直线在平面外包括直线与平面平行和直线与平面相交得答案.【解答】解:空间中直线与平面的位置关系有两种,即直线在平面外和直线在平面内,而直线在平面外包括直线与平面平行和直线与平面相交,可知,若直线a在平面α外,则直线a与平面α至多有一个公共点,故选:D.【知识点】平面的基本性质及推论2.在△ABC中,,.若点D满足,则=()A. B. C. D.【答案】C【分析】由题意先求出,,再求出.【解答】解:在△ABC中,,;如图;∴=﹣=﹣,又,∴==(﹣);∴=+=+(﹣)=+;故选:C.【知识点】向量加减混合运算3.设E为△ABC所在平面内一点,若=2,则()A.=+ B.=﹣ C.=+ D.=﹣【答案】A【分析】直接利用向量的线性运算的应用和减法求出结果.【解答】解:E为△ABC所在平面内一点,若=2,根据向量的线性运算:,则.故选:A.【知识点】向量数乘和线性运算4.复数z满足z(1+i)=1﹣ai,且z在复平面内对应的点在第四象限,则实数a的取值范围是()A.[﹣1,1] B.(﹣∞,﹣1) C.(﹣1,1) D.(1,+∞)【答案】C【分析】把已知等式变形,利用复数代数形式的乘除运算化简,由实部大于0且虚部小于0联立不等式组求解.【解答】解:由z(1+i)=1﹣ai,得z=,∵z在复平面内对应的点在第四象限,∴,解得﹣1<a<1.∴实数a的取值范围是(﹣1,1).故选:C.【知识点】复数的代数表示法及其几何意义5.在棱长为4的正方体ABCD﹣A1B1C1D1中,点M为B1C1的中点,过点D作平面a使a⊥BM,则平面a截正方体所得截面的面积为()A. B. C. D.【答案】C【分析】先作出平面α,进而求出截面的面积.【解答】解:作出截面CDEF,点E,F分别为AA1,BB1中点,四边形CDEF的面积为=.故选:C.【知识点】平面的基本性质及推论6.已知z=x+yi,x,y∈R,i是虚数单位.若复数+i是实数,则|z|的最小值为()A.0 B. C.5 D.【答案】D【分析】利用复数的运算法则和复数为实数的充要条件可得x=y+2,再利用复数模的计算公式和二次函数的单调性即可得出.【解答】解:∵复数+i===是实数,∴=0,得到x=y+2.∴|z|===,当且仅当y=﹣1,x=1取等号.∴|z|的最小值为.故选:D.【知识点】复数的模7.已知平面向量,,满足||=2|﹣|=2|﹣|=2||=2,则•的取值范围是()A.[1,2] B. C. D.【答案】C【分析】建立平面坐标系,得出三向量的终点满足的条件,用参数表示出,根据三角恒等变换化简即可求出最小值.【解答】解:设=,=,=,则由题意可知PA=2,AB=1,PC=1,BC=1,以PA为x轴,以PA的中垂线为y轴建立平面直角坐标系O﹣xy,则B点在圆A:(x﹣1)2+y2=1上,C点在圆P:(x+1)2+y2=1上,设B(1+cosα,sinα),C(﹣1+cosβ,sinβ),则==(2+cosα,sinα),==(cosβ,sinβ),∴=2cosβ+cosαcosβ+sinαsinβ,∵BC=1,∴||=1,∴+﹣2=1,即(1+cosα)2+sin2α+(﹣1+cosβ)2+sin2β﹣2(1+cosα)(﹣1+cosβ)﹣2sinαsinβ=1,整理可得:cosαcosβ+sinαsinβ=+2cosα﹣2cosβ,∴=+2cosα,∵|BC|=1,∴以B为圆心,以1为半径的圆B与圆P有公共点,故1≤|PB|≤2,即1≤(2+cosα)2+sin2α≤2,∴﹣2≤2cosα≤﹣,∴≤≤1.故选:C.【知识点】平面向量数量积的性质及其运算8.如图所示,在正方体ABCD﹣A1B1C1D1中,E为棱AA1的上的一点,且A1E=2EA=2,M为侧面ABB1A1上的动点.若C1M∥面ECD1,动点M形成的图形为线段PQ,则三棱锥B1﹣PQC1的外接球的表面积是()A.27π B.11π C.14π D.17π【答案】D【分析】若C1M∥面ECD1,则P、Q分别满足B1Q=2QB=2,B1P=2PA1=2;然后证明C1Q∥D1E,PQ∥D1C,根据面面平行的判定定理可推出平面C1PQ∥平面ECD1,故C1M∥面ECD1;于是以B1为顶点,B1P、B1Q、B1C1分别为长、宽、高构造一个长方体,求得该长方体的体对角线即可得三棱锥B1﹣PQC1外接球的直径,再由球的表面积公式即可得解.【解答】解:若C1M∥面ECD1,则P、Q分别满足B1Q=2QB=2,B1P=2PA1=2.理由如下:连接C1Q、C1P,∵A1E=2EA=2,B1Q=2QB=2,∴C1D1∥EQ,C1D1=EQ,∴四边形C1D1EQ为平行四边形,∴C1Q∥D1E.∵B1Q=2QB=2,B1P=2PA1=2∴PQ∥A1B∥D1C.又C1Q∩PQ=Q,D1E∩D1C=D1,C1Q、PQ⊂平面C1PQ,D1E、D1C⊂平面ECD1,∴平面C1PQ∥平面ECD1,∵C1M⊂平面C1PQ,∴C1M∥面ECD1.以B1为顶点,B1P=2、B1Q=2、B1C1=3分别为长、宽、高构造一个长方体,则该长方体的体对角线为三棱锥B1﹣PQC1外接球的直径,∴2R=,其中R为外接球的半径,∴R=,∴外接球的表面积S=4πR2=17π.故选:D.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.△ABC是边长为2的等边三角形,已知向量满足,则下列结论正确的是()A.是单位向量 B. C. D.【答案】ABD【分析】根据条件可求出,从而判断选项A正确;可得出,从而判断选项B正确;对两边平方即可得出,从而判断选项C错误;根据前面,可以得出,从而判断选项D正确.【解答】解:A.∵,∴由得,,∴是单位向量,该选项正确;B.∵,∴,该选项正确;C.,∴由得,,即,∴,该选项错误;D.∵,由上面得,,∴,该选项正确.故选:ABD.【知识点】数量积判断两个平面向量的垂直关系、平面向量数量积的性质及其运算10.四边形ABCD中,AB∥CD,∠A=90°,AB=2AD=2DC,,则下列表示正确的是()A. B. C. D.【答案】BD【分析】根据图象以及三角形法则分别求出对应选项的向量,即可判断选项是否正确.【解答】解:由已知四边形ABCD如图所示:由图可得:=++=﹣++=+,所以A错误,==(+)=+)=+==+=,B正确,==﹣=,C错误,===﹣,D正确,故选:BD.【知识点】平面向量的基本定理11.如图,直角梯形ABCD,AB∥CD,AB⊥BC,BC=CD=AB=1,E为AB中点,以DE为折痕把ADE折起,使点A到达点P的位置,且PC=.则()A.平面PED⊥平面EBCD B.二面角P﹣DC﹣B的大小为 C.PC⊥ED D.PC与平面PED所成角的正切值为【答案】AB【分析】根据PC的长证明PE⊥平面BCDE,分别计算线线角、线面角、面面角的大小即可作出判断.【解答】解:∵AB∥CD,BC⊥AB,CD=BC=AB=BE,∴四边形BCDE是正方形,∴DE⊥AE,DE⊥BE,故翻折后DE⊥PE,∵PE=AE=1,EC==,PC=,∴PE2+EC2=PC2,故PE⊥EC,又DE∩EC=E,∴PE⊥平面BCDE,又PE⊂平面PDE,∴平面PED⊥平面BCDE,故A正确,由PE⊥平面BCDE可得PE⊥CD,又CD⊥DE,PE∩DE=E,∴CD⊥平面PDE,故CD⊥PD,∴∠PDE为二面角P﹣D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论