2023-2024学年北京东城区北京汇文中学高一下数学期末预测试题含解析_第1页
2023-2024学年北京东城区北京汇文中学高一下数学期末预测试题含解析_第2页
2023-2024学年北京东城区北京汇文中学高一下数学期末预测试题含解析_第3页
2023-2024学年北京东城区北京汇文中学高一下数学期末预测试题含解析_第4页
2023-2024学年北京东城区北京汇文中学高一下数学期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京东城区北京汇文中学高一下数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.2.设是复数,从,,,,,,中选取若干对象组成集合,则这样的集合最多有()A.3个元素 B.4个元素 C.5个元素 D.6个元素3.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.4.一组数据中的每一个数据都乘以3,再减去30,得到一组新数据,若求得新数据的平均数是3.6,方差是9.9,则原来数据的平均数和方差分别是()A.11.2,1.1 B.33.6,9.9 C.11.2,9.9 D.24.1,1.15.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.若两等差数列,前项和分別为,,满足,则的值为().A. B. C. D.7.等差数列前项和为,满足,则下列结论中正确的是()A.是中的最大值 B.是中的最小值C. D.8.某几何体的三视图如下图所示(单位:cm)则该几何体的表面积(单位:)是()A. B. C. D.9.正方体中,则异面直线与所成的角是A.30° B.45° C.60° D.90°10.已知x,y满足约束条件,则的最大值是()A.-1 B.-2 C.-5 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.如图,一栋建筑物AB高(30-10)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15°和60°,在楼顶A处测得对塔顶C的仰角为30°,则通信塔CD的高为______m.12.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.13.如图,海岸线上有相距海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A的北偏西,与A相距海里的D处;乙船位于灯塔B的北偏西方向,与B相距海里的C处,此时乙船与灯塔A之间的距离为海里,两艘轮船之间的距离为海里.14.设满足约束条件若目标函数的最大值为,则的最小值为_________.15.设,,则______.16.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,侧棱垂直于底面,,分别是的中点.(1)求证:平面;(2)求三棱锥的体积.18.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.19.设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.20.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.21.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面底面ABCD,已知,为正三角形.(1)证明.(2)若,,求二面角的大小的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.2、A【解析】

设复数分别计算出以上式子,根据集合的元素互异性,可判断答案.【详解】解:设复数,,,,故由以上的数组成的集合最多有,,这个元素,故选:【点睛】本题考查复数的运算及相关概念,属于中档题.3、A【解析】

把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【详解】设,,,,,,,,,,的最大值是.故选A.【点睛】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.4、A【解析】

根据新数据所得的均值与方差,结合数据分析中的公式,即可求得原来数据的平均数和方差.【详解】设原数据为则新数据为所以由题意可知,则,解得,故选:A.【点睛】本题考查了数据处理与简单应用,平均数与方差公式的简单应用,属于基础题.5、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.6、B【解析】解:因为两等差数列、前项和分别为、,满足,故,选B7、D【解析】本题考查等差数列的前n项和公式,等差数列的性质,二次函数的性质.设公差为则由等差数列前n项和公式知:是的二次函数;又知对应二次函数图像的对称轴为于是对应二次函数为无法确定所以根据条件无法确定有没有最值;但是根据二次函数图像的对称性,必有即故选D8、C【解析】

通过三视图的观察可得到该几何体是由一个圆锥加一个圆柱得到的,表面积由一个圆锥的表面积和一个圆柱的侧面积组成【详解】圆柱的侧面积为,圆锥的表面积为,其中,,。选C【点睛】几何体的表面积一定要看清楚哪些面存在,哪些面不存在9、C【解析】连接A,易知:平行A,∴异面直线与所成的角即异面直线与A所成的角,连接,易知△为等边三角形,

∴异面直线与所成的角是60°故选C10、A【解析】根据题意作出约束条件确定的可行域,如下图:令,可知在图中处,取到最大值-1,故选A.考点:本题主要考查了简单的线性规划.二、填空题:本大题共6小题,每小题5分,共30分。11、60【解析】

由已知可以求出、、的大小,在中,利用锐角三角函数,可以求出.在中,运用正弦定理,可以求出.在中,利用锐角三角函数,求出.【详解】由题意可知:,,由三角形内角和定理可知.在中,.在中,由正弦定理可知:,在中,.【点睛】本题考查了锐角三角函数、正弦定理,考查了数学运算能力.12、【解析】

代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【详解】.故答案为:2【点睛】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.13、5,【解析】

为等边三角形,所以算出,,再在中根据余弦定理易得CD的长.【详解】因为为等边三角形,所以.在中根据余弦定理解得.【点睛】此题考查余弦定理的实际应用,关键点通过已知条件转换为数学模型再通过余弦定理求解即可,属于较易题目.14、【解析】

试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.15、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.16、1【解析】

设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】试题分析:(1)做辅助线,先证及四边形为平行四边形平面;(2)利用勾股定理求得.试题解析:(1)证明:取中点,连接,则∵是的中点,∴;∵是的中点,∴,∴四边形为平行四边形,∴,∵平面,平面,∴平面;(2)∵,∴,∴18、【解析】

连接,由题意,得米,米,,在△中,由余弦定理可得答案.【详解】设该扇形的半径为米,连接,如图所示:由题意,得米,米,,在△中,由余弦定理得,即,解得米.答:该扇形的半径的长为米.【点睛】本题考查了利用余弦定理解三角形,将问题转化为在三角形中求解是解题关键,属于基础题.19、(1);(2)对一切正整数,有.【解析】

(1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求;(2)对一切正整数n,有,考虑当时,,再由裂项相消求和,即可得证。【详解】(1)当时,两式做差得,,当时,上式显然成立,。(2)证明:当时,可得由可得即有<则当时,不等式成立。检验时,不等式也成立,综上对一切正整数n,有。【点睛】本题考查数列递推式,考查数列求和,考查裂项法的运用,确定数列的通项是关键.20、(1);(2)见解析【解析】

(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.21、(1)证明见解析.(2)二面角的余弦值为.【解析】

(1)作于点,连接,根据面面垂直性质可得底面ABCD,由三角形全等性质可得,进而根据线面垂直判定定理证明平面,即可证明.(2)根据所给角度和线段关系,可证明以均为等边三角形,从而取中点,连接,即可由线段长结合余弦定理求得二面角的大小.【详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论