版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏拉萨市那曲二中2024年数学高一下期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角所对的边分别为,若,且,则的形状是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.不确定2.已知a、b是两条不同的直线,、是两个不同的平面,若,,,则下列三个结论:①、②、③.其中正确的个数为()A.0 B.1 C.2 D.33.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.4.若,是不同的直线,,是不同的平面,则下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则5.若,,,则的最小值为()A. B. C. D.6.已知向量是单位向量,=(3,4),且在方向上的投影为,則A.36 B.21 C.9 D.67.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.C.绕直角三角形的一边旋转所形成的几何体叫圆锥.D.用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.8.在中,角、、所对的边分别为、、,若,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形9.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交10.设,,则下列不等式成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-512.已知,,且,则__________.13.已知两点A(2,1)、B(1,1+)满足=(sinα,cosβ),α,β∈(﹣,),则α+β=_______________14.在数列中,若,则____.15.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.16.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?18.在正△ABC中,AB=2,(t∈R).(1)试用,表示:(2)当•取得最小值时,求t的值.19.的内角所对的边分别为,且.(1)求角;(2)若,且的面积为,求的值.20.已知函数的图象过点,,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求实数的取值范围.21.为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?(2)从所抽取的样本中身高在和的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
通过正弦定理可得可得三角形为等腰,再由可知三角形是直角,于是得到答案.【详解】因为,所以,所以,即.因为,所以,又因为,所以,所以,故的形状是等腰直角三角形.【点睛】本题主要考查利用正弦定理判断三角形形状,意在考查学生的分析能力,计算能力,难度中等.2、C【解析】
根据题意,,,,则有,因此,,不难判断.【详解】因为,,,则有,所以,,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【点睛】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.3、C【解析】
将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.4、C【解析】
A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【详解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,则,分别是平面,的法线,必有;D中若,,,平面,可能平行也可能相交.故选C项.【点睛】本题考查空间中直线与平面,平面与平面的位置关系,属于简单题.5、B【解析】
根据题意,得出,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则当且仅当且即时取得最小值.故选B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.6、D【解析】
根据公式把模转化为数量积,展开后再根据和已知条件计算.【详解】因为在方向上的投影为,所以,.故选D.【点睛】本题主要考查向量模有关的计算,常用公式有,.7、B【解析】
根据课本中的相关概念依次判断选项即可.【详解】对于A选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B,根据课本中棱柱的概念得到是正确的;对于C,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为B.【点睛】这个题目考查了几何体的基本概念,属于基础题.8、B【解析】
利用正弦定理得到答案.【详解】故答案为B【点睛】本题考查了正弦定理,意在考查学生的计算能力.9、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D10、D【解析】试题分析:本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d;∴设a=1,b=-1,c=-2,d=-5,选项A,1-(-2)>-1-(-5),不成立;选项B,1(-2)>(-1)(-5),不成立;取选项C,,不成立,故选D考点:不等式的性质点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、④【解析】
由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.12、【解析】
根据向量平行的坐标表示可求得;代入两角和差正切公式即可求得结果.【详解】本题正确结果:【点睛】本题考查两角和差正切公式的应用,涉及到向量平行的坐标表示,属于基础题.13、或0【解析】
运用向量的加减运算和特殊角的三角函数值,可得所求和.【详解】两点A(2,1)、B(1,1)满足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即为sinα,cosβ,α,β∈(),可得α,β=±,则α+β=0或.故答案为0或.【点睛】本题考查向量的加减运算和三角方程的解法,考查运能力,属于基础题.14、【解析】
根据递推关系式,依次求得的值.【详解】由于,所以,.故答案为:【点睛】本小题主要考查根据递推关系式求数列某一项的值,属于基础题.15、5【解析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.16、【解析】
分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【点睛】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)不能获利,政府每月至少补贴元;(2)每月处理量为吨时,平均成本最低.【解析】
(1)利用:(生物的柴油总价值)(对应段的月处理成本)利润,根据利润的正负以及大小来判断是否需要补贴,以及补贴多少;(2)考虑:(月处理成本)(月处理量)每吨的平均处理成本,即为,计算的最小值,注意分段.【详解】(1)当时,该项目获利为,则∴当时,,因此,该项目不会获利当时,取得最大值,所以政府每月至少需要补贴元才能使该项目不亏损;(2)由题意可知,生活垃圾每吨的平均处理成本为:当时,所以当时,取得最小值;当时,当且仅当,即时,取得最小值因为,所以当每月处理量为吨时,才能使每吨的平均处理成本最低.【点睛】本题考查分段函数模型的实际运用,难度一般.(1)实际问题在求解的时候注意定义域问题;(2)利用基本不等式求解最值的时候,注意说明取等号的条件.18、(1)(2)【解析】
(1)根据即可得出,从而解得;(2)由(1)得,根据得,从而进行数量积的运算得出,配方即可得出当时,取最小值.【详解】(1)∵;∴;∴;(2)∵△ABC是正三角形,且AB=2;∴;∵;∴;∴∴时,取最小值.【点睛】本题考查向量减法、加法的几何意义,向量的数乘运算,以及向量的数量积运算及计算公式,配方法解决二次函数问题的方法,属于基础题.19、(1)(2)【解析】
(1)对等式,运用正弦定理实现边角转化,再利用同角三角函数关系中的商关系,可求出角的正切值,最后根据角的取值范围,求出角;(2)由三角形面积公式,可以求出的值,最后利用余弦定理,求出的值.【详解】(1)∵,∴,∵,∴,∴,∴在中;(2)∵的面积为,∴,∴,由余弦定理,有,∴.【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.20、(1);(2);(3)【解析】
(1)根据,,两点可确定,的值;(2)由(1)知,,求出,的值,然后根据,求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【详解】(1)由得:,即,由知,,,由得:,即,即,由得,,所以;(2)由得:,即,由得:,(3)由得:,当时,,实数的取值范围为.【点睛】本题主要考查了三角函数的图象与性质,三角函数值的求法,以及在闭区间上的三角函数的值域问题的求法,意在考查学生整体思想以及转化与化归思想的应用能力.21、(1)12600;(2).【解析】
(1)由频率分布直方图知,身高正常的频率,于是可得答案;(2)先计算出样本容量,再找出样本中身高在中的人数,从而利用古典概型公式得到答案.【详解】(1)由频率分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- web渗透测试课程设计
- 《戏曲教育在非物质文化遗产传承中的作用与创新发展研究》教学研究课题报告
- 2025年潍坊市北京大学现代农业研究院(潍坊现代农业山东省实验室)招聘工作人员考试核心题库及答案解析
- 2025铜鼓县公开招聘编外用工(公益性岗位)人员9人备考核心题库及答案解析
- 2025云南昆明市第三人民医院“凤凰引进计划”高层次人才招引模拟笔试试题及答案解析
- 2026年甘肃天水市事业单位引进高层次人才(219人)笔试重点试题及答案解析
- 2025年度12月浙江嘉兴市海宁市交通投资控股集团有限公司下属公司招聘4人备考考试题库及答案解析
- 2025年张家港市第五人民医院自主招聘编外合同制卫技人员备考题库及答案详解参考
- 2025广东广州民间金融街管理委员会招聘辅助人员1人备考核心题库及答案解析
- 2025辽宁康复医学中心科研助理招聘考试核心试题及答案解析
- 2025秋苏少版(新教材)初中美术八年级上册知识点及期末测试卷及答案
- 四川省成都市郫都区2024-2025学年八年级上学期期末检测物理试题(含答案)
- 15分钟应急救援圈
- 2025年榆林市榆阳区部分区属国有企业招聘(20人)备考笔试试题及答案解析
- 2025秋小学教科版(新教材)科学二年级上册知识点及期末测试卷及答案
- T/CECS 10011-2022聚乙烯共混聚氯乙烯高性能双壁波纹管材
- 传媒公司服务合同
- GB/T 17215.322-2008交流电测量设备特殊要求第22部分:静止式有功电能表(0.2S级和0.5S级)
- 驻厂QC检验日报表
- 五年级上说明文的复习课件
- 内功四经内功真经真本全书
评论
0/150
提交评论