贵州省六盘水市第七中学2024届数学高一下期末统考模拟试题含解析_第1页
贵州省六盘水市第七中学2024届数学高一下期末统考模拟试题含解析_第2页
贵州省六盘水市第七中学2024届数学高一下期末统考模拟试题含解析_第3页
贵州省六盘水市第七中学2024届数学高一下期末统考模拟试题含解析_第4页
贵州省六盘水市第七中学2024届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省六盘水市第七中学2024届数学高一下期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.2.若,是夹角为的两个单位向量,则与的夹角为()A. B. C. D.3.已知是常数,如果函数的图像关于点中心对称,那么的最小值为()A. B. C. D.4.已知中,,,若,则的坐标为()A. B. C. D.5.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A. B. C. D.7.在三棱锥中,面,则三棱锥的外接球表面积是()A. B. C. D.8.等差数列的前项和为,若,且,则()A.10 B.7 C.12 D.39.函数(其中为自然对数的底数)的图象大致为()A. B. C. D.10.若样本数据,,…,的方差为2,则数据,,…,的方差为()A.4 B.8 C.16 D.32二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.12.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).13.已知是等差数列,,,则的前n项和______.14.在中,.以为圆心,2为半径作圆,线段为该圆的一条直径,则的最小值为_________.15.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.16.已知直线:与直线:平行,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:,,.(1)求证:数列为等差数列,并求出数列的通项公式;(2)记(),用数学归纳法证明:,18.如图,为了测量河对岸、两点的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、.并测量得到以下数据,,,,,米,米.求、两点的距离.19.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.20.已知数列的前n项和为,满足:.(1)证明:数列是等比数列;(2)令,,求数列的前n项和.21.如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援?(角度精确到1°,参考数据:,)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.2、A【解析】

根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.3、C【解析】

将点的坐标代入函数的解析式,得出,求出的表达式,可得出的最小值.【详解】由于函数的图象关于点中心对称,则,,则,因此,当时,取得最小值,故选C.【点睛】本题考查余弦函数的对称性,考查初相绝对值的最小值,解题时要结合题中条件求出初相的表达式,结合表达式进行计算,考查分析问题和解决问题的能力,属于中等题.4、A【解析】

根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【详解】因为,所以因为,即M为BC中点所以所以所以选A【点睛】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.5、A【解析】

对分类讨论,利用两条直线相互垂直的充要条件即可得出.【详解】由题意,当时,两条直线分别化为:,,此时两条直线相互垂直;当时,两条直线分别化为:,,此时两条直线不垂直,舍去;当且时,由两条直线相互垂直,则,即,解得或;综上可得:或,两条直线相互垂直,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.【点睛】本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.6、B【解析】

利用椭圆的性质列出不等式求解即可.【详解】方程1表示焦点在y轴上的椭圆,可得,解得1<m.则m的取值范围为:(1,).故选B.【点睛】本题考查椭圆的方程及简单性质的应用,基本知识的考查.7、D【解析】

首先计算BD长为2,判断三角形BCD为直角三角形,将三棱锥还原为长方体,根据体对角线等于直径,计算得到答案.【详解】三棱锥中,面中:在中:即ABCD四点都在对应长方体上:体对角线为AD答案选D【点睛】本题考查了三棱锥的外接球表面积,将三棱锥放在对应的长方体里面是解题的关键.8、C【解析】

由等差数列的前项和公式解得,由,得,由此能求出的值。【详解】解:差数列的前n项和为,,,解得,解得,故选:C。【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.9、C【解析】

由题意,可知,即为奇函数,排除,,又时,,可排除D,即可选出正确答案.【详解】由题意,函数定义域为,且,即为奇函数,排除,,当时,,,即时,,可排除D,故选C.【点睛】本题考查了函数图象的识别,考查了函数奇偶性的运用,属于中档题.10、B【解析】

根据,则即可求解.【详解】因为样本数据,,…,的方差为2,所以,,…,的方差为,故选B.【点睛】本题主要考查了方差的概念及求法,属于容易题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).12、否【解析】

根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.13、【解析】

由,可求得公差d,进而可求得本题答案.【详解】设等差数列的公差为d,由题,有,解得,所以.故答案为:【点睛】本题主要考查等差数列的通项公式及求和公式,属基础题.14、-10【解析】

向量变形为,化简得,转化为讨论夹角问题求解.【详解】由题线段为该圆的一条直径,设夹角为,可得:,当夹角为时取得最小值-10.故答案为:-10【点睛】此题考查求平面向量数量积的最小值,关键在于根据平面向量的运算法则进行变形,结合线性运算化简求得,此题也可建立直角坐标系,三角换元设坐标利用函数关系求最值.15、【解析】

取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.16、4【解析】

利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2)见解析【解析】

(1)定义法证明:;(2)采用数学归纳法直接证明(注意步骤).【详解】由可知:,则有,即,所以为等差数列,且首相为,公差,所以,故;(2),当时,成立;假设当时,不等式成立则:;当时,,因为,所以,则,故时不等式成立,综上可知:.【点睛】数学归纳法的一般步骤:(1)命题成立;(2)假设命题成立;(3)证明命题成立(一定要借助假设,否则不能称之为数学归纳法).18、米【解析】

在中,求出,利用正弦定理求出,然后在中利用锐角三角函数定义求出,最后在中,利用余弦定理求出.【详解】由题意可知,在中,,由正弦定理得,所以米,在中,米,在中,由余弦定理得,所以,米.【点睛】本题考查利用正弦、余弦定理解三角形应用题,要将实际问题转化为三角形的问题,并结合已知元素类型选择正弦、余弦定理解三角形,考查分析问题和解决问题的能力,属于中等题.19、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】

(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【点睛】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.20、(1)证明见解析(2)【解析】

(1)利用当时,求证即可;(2)先结合(1)求得,再由,然后累加求和即可.【详解】解:(1)因为,①,②①-②得:,即,又,即,则,即数列是以6为首项,3为公比的等比数列;(2)由(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论