山东青岛胶州市2024届数学高一下期末检测试题含解析_第1页
山东青岛胶州市2024届数学高一下期末检测试题含解析_第2页
山东青岛胶州市2024届数学高一下期末检测试题含解析_第3页
山东青岛胶州市2024届数学高一下期末检测试题含解析_第4页
山东青岛胶州市2024届数学高一下期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东青岛胶州市2024届数学高一下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足且,若向量在向量方向上的投影为,则()A. B. C. D.2.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在3.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A.5 B.10 C.4 D.204.一个长方体长、宽分别为5,4,且该长方体的外接球的表面积为,则该长方体的表面积为()A.47 B.60 C.94 D.1985.已知角的终边经过点,则()A. B. C.-2 D.6.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为,若将军从山脚下的点处出发,河岸线所在直线方程为,则“将军饮马”的最短总路程为()A.4 B.5 C. D.7.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.8.若角α的终边经过点P(-1,1A.sinα=1C.cosα=29.若,,则等于()A. B. C. D.10.设x,y满足约束条件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目标函数z=abx+y(a,A.2 B.4 C.6 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.正项等比数列中,存在两项使得,且,则的最小值为______.12.若正实数满足,则的最大值为__________.13.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______15.若数列的前项和,满足,则______.16.古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,,动点满足(其中和是正常数,且),则的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.18.在平面直角坐标系中,O是坐标原点,向量若C是AB所在直线上一点,且,求C的坐标.若,当,求的值.19.某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.(1)求应从小学、中学中分别抽取的学校数目;(2)若从抽取的5所学校中抽取2所学校作进一步数据分析:①列出所有可能抽取的结果;②求抽取的2所学校至少有一所中学的概率.20.已知数列{}的首项.(1)求证:数列为等比数列;(2)记,若,求最大正整数.21.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由,即,所以,由向量在向量方向上的投影为,则,即,所以,故选A.2、C【解析】

首先根据求出数列、公差之间的关系,再代入即可。【详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。3、B【解析】

直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.4、C【解析】

根据球的表面积公式求得半径,利用等于体对角线长度的一半可构造方程求出长方体的高,进而根据长方体表面积公式可求得结果.【详解】设长方体高为,外接球半径为,则,解得:长方体外接球半径为其体对角线长度的一半解得:长方体表面积本题正确选项:【点睛】本题考查与外接球有关的长方体的表面积的求解问题,关键是能够明确长方体的外接球半径为其体对角线长度的一半,从而构造方程求出所需的棱长.5、B【解析】按三角函数的定义,有.6、C【解析】

求出点A关于直线的对称点,再求解该对称点与B点的距离,即为所求.【详解】根据题意,作图如下:因为点,设其关于直线的对称点为故可得,解得,即故“将军饮马”的最短总路程为.故选:C.【点睛】本题考查点关于直线的对称点的坐标的求解,以及两点之间的距离公式,属基础题.7、B【解析】

依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.8、B【解析】

利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.9、C【解析】

直接用向量的坐标运算即可得到答案.【详解】由,.故选:C【点睛】本题考查向量的坐标运算,属于基础题.10、B【解析】

画出不等式组对应的平面区域,平移动直线至1,4时z有最大值8,再利用基本不等式可求a+b的最小值.【详解】原不等式组表示的平面区域如图中阴影部分所示,当直线z=abx+y(a,b>0)过直线2x-y+2=0与直线8x-y-4=0的交点1,4时,目标函数z=abx+y(a,即ab=4,所以a+b≥2ab=4,当且仅当a=b=2时,等号成立.所以【点睛】二元一次不等式组的条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如3x+4y表示动直线3x+4y-z=0的横截距的三倍,而y+2x-1则表示动点Px,y与二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先由已知求出公比,然后由求出满足的关系,最后求出的所有可能值得最小值.【详解】设数列公比为,由得,∴,解得(舍去),由得,,∵,所以只能取,依次代入,分别为2,,2,,,最小值为.故答案为:.【点睛】本题考查等比数列的性质,考查求最小值问题.解题关键是由等比数列性质求出满足的关系.接着求最小值,容易想到用基本不等式求解,但本题实质上由于,因此对应的只有5个,可以直接代入求值,然后比较大小即可.12、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.13、10【解析】

由题意可得,只需计算所有可能取值的个数即可.【详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【点睛】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.14、1.1【解析】

先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.15、【解析】

令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.16、【解析】

设,由动点满足(其中和是正常数,且),可得,化简整理可得.【详解】设,由动点满足(其中和是正常数,且),所以,化简得,即,所以该圆半径故该圆的半径为.【点睛】本题考查圆方程的标准形式和两点距离公式,难点主要在于计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)6【解析】

(1)由平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行可判定平面;(2)由三棱锥的体积为4,可知四棱锥的体积,再由三棱锥的体积公式即可求得高.【详解】(1)证明:连接,与交于点,连接.因为侧面是平行四边形,所以点是的中点.因为点是棱的中点,所以.因为平面,平面,所以平面.(2)解:因为三棱锥的体积为4,所以三棱柱的体积为12,则四棱锥的体积为.因为侧面是边长为2的正方形,所以侧面的面积为.设点到平面的距离为,则,解得.故点到平面的距离为6.【点睛】本题考查直线平行平面的判定和用三棱锥体积公式求点到平面的距离.18、(1);(2)或1【解析】

由向量共线的坐标运算得:设,可得,又因为,,即.由题意结合向量加减法与数量积的运算化简得,所以,运算可得解.【详解】,因为C是AB所在直线上一点,设,可得,又因为,所以,解得,所以,故答案为且,显然,所以,,又所以,即,所以,所以即,解得:或,故答案为或1.【点睛】本题考查了向量共线的坐标运算及平面向量数量积的运算,属于中档题.19、(1)3所、2所;(2)①共10种;②【解析】

(1)根据分层抽样的方法,得到分层抽样的比例,即可求解样本中小学与中学抽取的学校数目;(2)①3所小学分别记为;2所中学分别记为,利用列举法,即可求得抽取的2所学校的所有结果;②利用古典概型的概率计算公式,即可求得相应的概率.【详解】(1)学校总数为35所,所以分层抽样的比例为,计算各类学校应抽取的数目为:,故从小学、中学中分别抽取的学校数目为3所、2所.(2)①3所小学分别记为;2所中学分别记为应抽取的2所学校的所有结果为:共10种.②设“抽取的2所学校至少有一所中学”作为事件.其结果共有7种,所以概率为.【点睛】本题主要考查了分层抽样的应用,以及古典概型及其概率的计算,其中解答中认真审题,合理利用列举法求得基本事件的总数是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)详见解析;(2)99.【解析】

(1)利用数列递推公式取倒数,变形可得,从而可证数列为等比数列;(2)确定数列的通项,利用等比数列的求和公式求和,即可求最大的正整数.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论