




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省仁寿县文宫中学2023-2024学年高一下数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.52.已知函数和在区间I上都是减函数,那么区间I可以是()A. B. C. D.3.圆关于直线对称,则的值是()A. B. C. D.4.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.75.已知平面向量,,且,则实数的值为()A. B. C. D.6.为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验,先将500件产品编号为000,001,002,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读取(为了便于说明,下面摘取了随机数表附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是()A.548 B.443 C.379 D.2177.中,若,则的形状是()A.等腰三角形 B.等边三角形C.锐角三角形 D.直角三角形8.已知直线与圆交于A、B两点,O是坐标原点,向量、满足,则实数a的值是()A.2 B. C.或 D.2或9.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是()A.10 B.20 C.30 D.4010.某船从处向东偏北方向航行千米后到达处,然后朝西偏南的方向航行6千米到达处,则处与处之间的距离为()A.千米 B.千米 C.3千米 D.6千米二、填空题:本大题共6小题,每小题5分,共30分。11.在△ABC中,若,则△ABC的形状是____.12.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.13.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.14.已知,则的值为______15.在轴上有一点,点到点与点的距离相等,则点坐标为____________.16.已知函数的部分图象如图所示,则的单调增区间是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.18.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).19.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.20.如图,四棱锥中,是正三角形,四边形ABCD是矩形,且平面平面.(1)若点E是PC的中点,求证:平面BDE;(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.21.某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;(2)同一组数据用该区间的中点值作代表.(i)求这100人月薪收入的样本平均数x和样本方差s2(ii)该校在某地区就业的本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设Ω=[x-s-0.018,x+s+0.018),月薪落在区间Ω左侧的每人收取400元,月薪落在区间方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?参考数据:174≈13.2
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
选择以作为基底表示,根据变形成,即可求解.【详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【点睛】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.2、B【解析】
分别根据和的单调减区间即可得出答案.【详解】因为和的单调减区间分别是和,所以选择B【点睛】本题考查三角函数的单调性,意在考查学生对三角函数图像与性质掌握情况.3、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.4、B【解析】
分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.5、B【解析】
先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.6、D【解析】
利用随机数表写出每一个数字即得解.【详解】第一个号码为439,第二个号码为495,第三个号码为443,第四个号码为217.故选:D【点睛】本题主要考查随机数表,意在考查学生对该知识的理解掌握水平.7、D【解析】
根据正弦定理,得到,进而得到,再由两角和的正弦公式,即可得出结果.【详解】因为,所以,所以,即,所以,又因此,所以,即三角形为直角三角形.故选D【点睛】本题主要考查三角形形状的判断,熟记正弦定理即可,属于常考题型.8、D【解析】
由,两边平方,得,所以,则为等腰直角三角形,而圆的半径,则原点到直线的距离为,所以,解得的值为2或-2.故选D.9、B【解析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.10、B【解析】
通过余弦定理可得答案.【详解】设处与处之间的距离为千米,由余弦定理可得,则.【点睛】本题主要考查余弦定理的实际应用,难度不大.二、填空题:本大题共6小题,每小题5分,共30分。11、钝角三角形【解析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题12、【解析】
设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.13、【解析】
建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【点睛】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.14、【解析】
根据两角差的正弦公式,化简,解出的值,再平方,即可求解.【详解】由题意,可知,,平方可得则故答案为:【点睛】本题考查三角函数常用公式关系转换,属于基础题.15、【解析】
设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.16、(区间端点开闭均可)【解析】
由已知函数图象求得,进一步得到,再由五点作图的第二点求得,则得到函数的解析式,然后利用复合函数的单调性求出的单调增区间.【详解】由图可知,,则,.又,.则.由,,解得,.的单调增区间是.【点睛】本题主要考查由函数的部分图象求函数解析式以及复合函数单调区间的求法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由知:,利用等比数列的通项公式即可得出;(2)bn=|11﹣2n|,设数列{11﹣2n}的前n项和为Tn,则.当n≤5时,Sn=Tn;当n≥6时,Sn=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18、(1)见证明;(2);画图见解析【解析】
(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接,取中点记为,过作,且,则.证明:因为为中点,所以且;又因为,且,所以且,所以四边形为平行四边形,则;又因为,所以,且平面,所以平面;又因为,则,平面,即点为直线与平面的交点;因为,所以,则;且有上述证明可知:四边形为平行四边形,所以,所以,因为,.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)和;(2)和【解析】
(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P,三点的圆为,结合直线与圆的位置关系,分析可得答案.【详解】(1)根据题意,点P在直线l上,设,连接,因为圆的方程为,所以圆心,半径,因为过点P作圆的切线PA,PB,切点为A,B;则有,且,易得,又由,即,则,即有,解得或,即的坐标为和.(2)根据题意,是圆的切线,则,则过A,P,三点的圆为以为直径的圆,设的坐标为,,则以为直径的圆为,变形可得:,即,则有,解得或,则当和,时,恒成立,则经过A,P,三点的圆必经过异于的某个定点,且定点的坐标和.【点睛】本题考查了直线与圆的位置关系、圆中的定点问题,考查学生分析问题、解决问题的能力,属于中档题.20、(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值试题解析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE(Ⅱ)解:依据题意可得:PA=AB=PB=2,取AB中点O,所以PO⊥AB,且又平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,因为四边形ABCD是矩形,所以BC⊥平面PAB,则△PBC为直角三角形,所以,则直角三角形△ABD的面积为,由FM∥PO得:考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积21、(1)23;(2)(i)2,0.0174【解析】
(1)根据频率分布直方图求出前2组中的人数,由分层抽样得抽取的人数,然后把6人编号,可写出任取2人的所有组合,也可得出获赠智能手机的2人月薪都不低于1.75万元的所有组合,从而可计算出概率.(2)根据频率分布直方图计算出均值和方差,然后求出区间Ω,结合频率分布直方图可计算出两方案收取的费用.【详解】(1)第一组有0.2×0.1×100=2人,第二组有1.0×0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全与信息技术2025年考试重点题目及答案
- 兰州职业技术学院《Hadoop大数据技术》2023-2024学年第二学期期末试卷
- 四川工业科技学院《微机原理与汇编语言》2023-2024学年第二学期期末试卷
- 2025年数据分析与处理职业考试试卷及答案
- 2025年注册会计师资格考试试卷及答案
- 2025年移动互联网应用开发职业考试试题及答案
- 2025年职业健康管理师考试试卷及答案汇编
- 山东省广饶一中2024-2025学年高三最后一卷化学试题文试题含解析
- 岐山县2025年小升初总复习数学精练含解析
- 江苏省句容市、丹阳市2024-2025学年第一次高中毕业生复习统一检测试题语文试题含解析
- 工程款抵房协议合同模板
- 初中数学问题解决策略 特殊化教案2024-2025学年北师大版(2024)七年级数学下册
- 托管中心晚辅老师培训
- 兼职顾问服务合同范本
- 人教版(新教材)高中物理选择性必修2教学设计2:2 2 法拉第电磁感应定律教案
- 2024-2025学年人教版数学八年级下册期中押题重难点检测卷(含答案)
- 基建科室面试题及答案
- 儒林外史名著试题及答案
- 国开电大软件工程形考作业3参考答案 (一)
- 2025年11.0C-双基地感知关键技术研究与验证白皮书-未来移动通信论坛
- 《天津T建设集团公司应收账款管理问题及完善对策研究》9800字(论文)
评论
0/150
提交评论