云南省蒙自一中2025届高一下数学期末经典试题含解析_第1页
云南省蒙自一中2025届高一下数学期末经典试题含解析_第2页
云南省蒙自一中2025届高一下数学期末经典试题含解析_第3页
云南省蒙自一中2025届高一下数学期末经典试题含解析_第4页
云南省蒙自一中2025届高一下数学期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省蒙自一中2025届高一下数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.现有1瓶矿泉水,编号从1至1.若从中抽取6瓶检验,用系统抽样方法确定所抽的编号为()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,302.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的()倍.A.95 B.2 C.523.在中,,BC边上的高等于,则A. B. C. D.4.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年5.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为()A.85,85 B.85,86 C.85,87 D.86,866.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形7.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.8.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.9.已知数列{an}的前n项和为Sn,Sn=2aA.145 B.114 C.810.点,,直线与线段相交,则实数的取值范围是()A. B.或C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)12.若、、这三个的数字可适当排序后成为等差数列,也可适当排序后成等比数列,则________________.13.设函数的最小值为,则的取值范围是___________.14.计算:________.15.设函数,则的值为__________.16.若在上是减函数,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(Ⅰ)求,的值;(Ⅱ)求的值.18.已知两个不共线的向量a,b满足,,.(1)若,求角θ的值;(2)若与垂直,求的值;(3)当时,存在两个不同的θ使得成立,求正数m的取值范围.19.已知.(Ⅰ)化简;(Ⅱ)已知,求的值.20.在平面直角坐标系中,已知向量,,.(1)若,求的值;(2)若与的夹角为,求的值.21.已知向量,函数,且当,时,的最小值为.(1)求的值,并求的单调递增区间;(2)先将函数的图象上所有点的横坐标缩小到原来的倍(纵坐标不变),再将所得图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据系统抽样原则,可知编号成公差为的等差数列,观察选项得到结果.【详解】根据系统抽样原则,可知所抽取编号应成公差为的等差数列选项编号公差为;选项编号不成等差;选项编号公差为;可知错误选项编号满足公差为的等差数列,正确本题正确选项:【点睛】本题考查抽样方法中的系统抽样,关键是明确系统抽样的原则和特点,属于基础题.2、D【解析】

设最小球的半径为R,根据比例关系即可得到另外两个球的半径,再利用球的体积公式表示出三个球的体积,即可得到结论。【详解】设最小球的半径为R,由三个球的半径的比是1:2:3,可得另外两个球的半径分别为2R,3R;∴最小球的体积V1=43π∴V故答案选D【点睛】本题主要考查球体积的计算公式,属于基础题。3、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4、C【解析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】

根据茎叶图的数据,选择对应的众数和中位数即可.【详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是.故选:B.【点睛】本题考查由茎叶图计算数据的众数和中位数,属基础计算题.6、D【解析】

先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.7、A【解析】

作出两异面直线所成的角,然后由余弦定理求解.【详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.8、D【解析】

由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.9、B【解析】

由Sn=2an-2,可得Sn-1=2an-1-2两式相减可得公比的值,由S1=2a1-2=【详解】因为Sn=2a两式相减化简可得an公比q=a由S1=2a∵a则4×2m+n-2=64∴1当且仅当nm=9mn时取等号,此时∵m,n取整数,∴均值不等式等号条件取不到,则1m验证可得,当m=2,n=4时,1m+9【点睛】本题主要考查等比数列的定义与通项公式的应用以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).10、B【解析】

根据,在直线异侧或其中一点在直线上列不等式求解即可.【详解】因为直线与线段相交,所以,,在直线异侧或其中一点在直线上,所以,解得或,故选B.【点睛】本题主要考查点与直线的位置关系,考查了一元二次不等式的解法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】

由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.12、【解析】

由,,可知,、、成等比数列,可得出,由、、或、、成等差数列,可得出关于、的方程组,解出这两个未知数的值,即可计算出的值.【详解】由于,,若不是等比中项,则有或,两个等式左边均为正数,右边均为负数,不合题意,则必为等比中项,所以,将三个数由大到小依次排列,则有、、成等差数列或、、成等差数列.①若、、成等差数列,则,联立,解得,此时,;②若、、成等差数列,则,联立,解得,此时,.综上所述,.故答案为:.【点睛】本题考查等比数列和等差数列定义的应用,根据题意列出方程组是解题的关键,考查推理能力与计算能力,属于中等题.13、.【解析】

确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,14、3【解析】

直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.15、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.16、【解析】

化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【详解】,时,,且在上是减函数,,,因为解得.【点睛】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),.(Ⅱ).【解析】试题分析:(Ⅰ)结合角的范围和同角三角函数基本关系可得,.(Ⅱ)将原式整理变形,结合(Ⅰ)的结论可得其值为.试题解析:(Ⅰ)因为,所以,由于,所以,所以.(Ⅱ)原式..18、(1)(2)(3)【解析】

(1)由题得,再写出方程的解即得解;(2)先求出,再利用向量的模的公式求出;(3)等价于在有两解,结合三角函数分析得解.【详解】(1)由题得所以角的集合为.(2)由条件知,,又与垂直,所以,所以.所以,故.(3)由,得,即,即,,所以.由得,又要有两解,结合三角函数图象可得,,即,又因为,所以.即m的范围.【点睛】本题主要考查向量平行垂直的坐标表示,考查向量的模的计算,考查三角函数图像和性质的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(Ⅰ);(Ⅱ)-2。【解析】试题分析:(Ⅰ)5分(Ⅱ)10分考点:三角函数化简求值点评:三角函数化简主要考察的是诱导公式,如等,本题难度不大,需要学生熟记公式20、(1)1(2)【解析】

(1).若,则,结合三角函数的关系式即可求的值;

(2).若与的夹角为,利用向量的数量积的坐标公式进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论