版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省龙口市兰高镇兰高校中考试题猜想数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=22.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-63.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.44.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4 B. C.12 D.5.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.7.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A. B. C. D.8.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是()A. B.C. D.9.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a610.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④二、填空题(共7小题,每小题3分,满分21分)11.因式分解:3x3﹣12x=_____.12.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为________________.13.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180∘形成的,若∠BAC14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.16.已知是整数,则正整数n的最小值为___17.如果实数x、y满足方程组,求代数式(+2)÷.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.19.(5分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?20.(8分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取值范围;(3)直线与矩形没有公共点,直接写出的取值范围.21.(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.22.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量(吨)423每吨水果可获利润(千元)574(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?23.(12分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.24.(14分)计算下列各题:(1)tan45°−sin60°•cos30°;(2)sin230°+sin45°•tan30°.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.2、B【解析】
先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.3、C【解析】分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.详解:121∴对121只需进行3次操作后变为1.故选C.点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.4、D【解析】分析:由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,∵△ABC是等边三角形,点D是BC边上的中点,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于点P,此时DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故选D.点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.5、C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.6、A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.考点:三视图视频7、C【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×+1×=+,水之和为:+,∴混合液中的酒精与水的容积之比为:(+)÷(+)=,故选C.【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.8、A【解析】解:设去年居民用水价格为x元/cm1,根据题意列方程:,故选A.9、B【解析】
根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.10、B【解析】
解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.∴正确的有①②④.故选B.考点:线段垂直平分线的性质.二、填空题(共7小题,每小题3分,满分21分)11、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12、或【解析】试题分析:AC===,因为矩形都相似,且每相邻两个矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案为.考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.13、60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.14、1【解析】
由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.15、a≤且a≠1.【解析】
根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.16、1【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.17、1【解析】解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.三、解答题(共7小题,满分69分)18、(1)抛物线解析式为y=﹣;(2)DF=3;(3)点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解析】
(1)将点A、C坐标代入抛物线解析式求解可得;(2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.【详解】(1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;(2)如图1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如图2,设点D的坐标为(t,0).∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.19、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000;故最高利润为45000元,最低利润为25000元.20、(1);(2);(3)【解析】
(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.【详解】解:(1),设直线表达式为,,解得直线表达式为;(2)直线可以看到是由直线平移得到,当直线过时,直线与矩形有一个公共点,如图1,当过点时,代入可得,解得.当过点时,可得直线与矩形有公共点时,的取值范围为;(3),直线过,且,如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,当过点时,代入可得,解得直线:与矩形没有公共点时的取值范围为【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.21、【解析】
试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)=.考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.22、(1)乙种水果的车有2辆、丙种水果的汽车有6辆;(2)乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)见解析.【解析】
(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组即可解答;(3)设总利润为w千元,表示出w=10m+1.列出不等式组确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.【详解】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:解得:答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得:答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.(3)设总利润为w千元,w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.∵∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,在w=10m+1中,w随m的增大而增大,∴当m=15时,W最大=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.【点睛】此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值,需确定自变量的取值范围.23、(1);(2),;(3)【解析】试题分析:(1)根据反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河道防洪设计方案
- 仓库消防设施巡检与维护方案
- 隧道设计变更管理方案
- 农田水分动态模拟研究
- 消防安全演练评估方案
- 2025中国与欧盟的排放交易体系比较研究
- 仓库通风系统与火灾防护对策
- 给水工程生态修复措施
- 隧道防水处理施工方案
- 人防建设资金管理
- 2024年11月对口高考各科计算机文化基础练习题(含答案)
- 2025年海南省直及地市、县事业单位招聘考试自然科学专技类(综合应用能力·C类)历年参考题库含答案详解(5卷)
- 2025年同等学力申硕-同等学力(动力工程及工程热物理)历年参考题库含答案解析(5套典型题)
- 隐睾护理查房
- 施工企业奖惩管理办法
- 巡视人员奖惩管理办法
- 保洁员工5S管理
- 成人失禁相关性皮炎的预防与护理(2024年中华护理学会团体标准)
- 篮球裁判员手册(2人执裁与3人执裁2018年版)
- 早产儿脑室内出血预防专家共识(2025)解读
- 2025年中考道德与法治三轮冲刺:主观题常用答题术语速查宝典
评论
0/150
提交评论