山东省青岛市平度第九中学2023-2024学年高一数学第二学期期末监测模拟试题含解析_第1页
山东省青岛市平度第九中学2023-2024学年高一数学第二学期期末监测模拟试题含解析_第2页
山东省青岛市平度第九中学2023-2024学年高一数学第二学期期末监测模拟试题含解析_第3页
山东省青岛市平度第九中学2023-2024学年高一数学第二学期期末监测模拟试题含解析_第4页
山东省青岛市平度第九中学2023-2024学年高一数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市平度第九中学2023-2024学年高一数学第二学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.2.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.3.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.04.等差数列中,,则().A.110 B.120 C.130 D.1405.设函数,则满足的的取值范围是()A. B. C. D.6.函数的部分图象如图,则()()A.0 B. C. D.67.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.68.某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A.420人 B.480人 C.840人 D.960人9.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.10.如果全集,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.12.若满足约束条件则的最大值为__________.13.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.14.实数x、y满足,则的最大值为________.15.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______16.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的首项为,公比为,它的前项和为.(1)若,,求;(2)若,,且,求.18.如图,四棱锥中,是正三角形,四边形ABCD是矩形,且平面平面.(1)若点E是PC的中点,求证:平面BDE;(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.19.如图,在四边形中,.(1)若为等边三角形,且是的中点,求.(2)若,,求.20.在中,角、、的对边分别为、、,已知.(1)求角的大小;(2)若,点在边上,且,,求边的长.21.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.2、B【解析】

利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【点睛】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.3、C【解析】

根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.4、B【解析】

直接运用等差数列的下标关系即可求出的值.【详解】因为数列是等差数列,所以,因此,故本题选B.【点睛】本题考查了等差数列下标性质,考查了数学运算能力.5、C【解析】

利用特殊值,对选项进行排除,由此得到正确选项.【详解】当时,,由此排除D选项.当时,,由此排除B选项.当时,,由此排除A选项.综上所述,本小题选C.【点睛】本小题主要考查分段函数求值,考查利用特殊值法解选择题,属于基础题.6、D【解析】

先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.7、C【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得

S=0,n=1

S=2,n=2

满足条件S<30,执行循环体,S=2+4=6,n=3

满足条件S<30,执行循环体,S=6+8=14,n=4

满足条件S<30,执行循环体,S=14+16=30,n=1

此时,不满足条件S<30,退出循环,输出n的值为1.

故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8、C【解析】

先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型.9、D【解析】

根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.10、C【解析】

首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【点睛】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.12、【解析】

作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.13、【解析】

由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【点睛】考查统计中读图能力,从图中提取基本信息的基本能力.14、【解析】

根据约束条件,画出可行域,将目标函数化为斜截式,找到其在轴截距的最大值,得到答案.【详解】由约束条件,画出可行域,如图所示,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最大,联立,解得,即,所以.故答案为:.【点睛】本题考查线性规划求最大值,属于简单题.15、1【解析】

由题得函数的周期为解之即得解.【详解】由题得函数的周期为.故答案为1【点睛】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、②③【解析】

根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据题意建立和的方程组,求出这两个量,然后利用等比数列的通项公式可求出;(2)分、、三种情况讨论,然后利用等比数列的求和公式求出和,即可计算出.【详解】(1)若,则,得,则,这与矛盾,则,所以,,解得,因此,;(2)当时,则,所以,;当时,,,则,此时;当时,则.因此,.【点睛】本题考查等比数列通项公式的计算,同时也考查了与等比数列前项和相关的数列极限的计算,解题时要注意对公比的取值进行分类讨论,考查运算求解能力,属于中等题.18、(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值试题解析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE(Ⅱ)解:依据题意可得:PA=AB=PB=2,取AB中点O,所以PO⊥AB,且又平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,因为四边形ABCD是矩形,所以BC⊥平面PAB,则△PBC为直角三角形,所以,则直角三角形△ABD的面积为,由FM∥PO得:考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积19、(1)(2)【解析】

(1)先由题意,结合平面向量基本定理,用表示出,再由向量的数量积运算,即可得出结果;(2)先由向量数量积的运算,求出,再由,结合题中条件,即可得出结果.【详解】解:(1)为等边三角形,且,又是中点,又(2)由题意:,,,又【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.20、(1);(2).【解析】

(1)利用正弦定理边角互化思想以及两角和的正弦公式可求出的值,结合角的范围可得出角的大小;(2)利用余弦定理得出,由三角形的面积公式,代入数据得出,将该等式代入等式可解出边的长.【详解】(1)由及正弦定理,可得,即,由可得,所以,因为,,所以,,;(2)由于,由余弦定理得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论