安徽省亳州市利辛县阚疃金石中学2025届高一数学第二学期期末调研试题含解析_第1页
安徽省亳州市利辛县阚疃金石中学2025届高一数学第二学期期末调研试题含解析_第2页
安徽省亳州市利辛县阚疃金石中学2025届高一数学第二学期期末调研试题含解析_第3页
安徽省亳州市利辛县阚疃金石中学2025届高一数学第二学期期末调研试题含解析_第4页
安徽省亳州市利辛县阚疃金石中学2025届高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州市利辛县阚疃金石中学2025届高一数学第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,,则数列前项和取最大值时,的值等于()A.12 B.11 C.10 D.92.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.3.在中,角所对应的边分别为,且满足,则的形状为()A.等腰三角形或直角三角形 B.等腰三角形C.直角三角形 D.等边三角形4.在中,,则=()A. B. C. D.5.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.6.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.7.向量,,且,则等于()A. B. C.2 D.108.已知中,,,,则B等于()A. B.或 C. D.或9.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.10.某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,那么__________.12.若集合,,则集合________.13.实数2和8的等比中项是__________.14.的化简结果是_________.15.直线和将单位圆分成长度相等的四段弧,则________.16.已知数列满足,,则_______;_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C的对边分别为a,b,c,已知.求A;已知,的面积为的周长.18.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.19.足球,有“世界第一运动的美誉,是全球体育界最具影响力的单项体育运动之一.足球传球是足球运动技术之一,是比赛中组织进攻、组织战术配合和进行射门的主要手段.足球截球也是足球运动技术的一种,是将对方控制或传出的球占为己有,或破坏对方对球的控制的技术,是比赛中由守转攻的主要手段.这两种运动技术都需要球运动员的正确判断和选择.现有甲、乙两队进行足球友谊赛,A、B两名运动员是甲队队员,C是乙队队员,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.现A沿北偏西60°方向水平传球,球速为10m/s,同时B沿北偏西30°方向以10m/s的速度前往接球,C同时也以10m/s的速度前去截球.假设球与B、C都在同一平面运动,且均保持匀速直线运动.(1)若C沿南偏西60°方向前去截球,试判断B能否接到球?请说明理由.(2)若C改变(1)的方向前去截球,试判断C能否球成功?请说明理由.20.如图半圆的直径为4,为直径延长线上一点,且,为半圆周上任一点,以为边作等边(、、按顺时针方向排列)(1)若等边边长为,,试写出关于的函数关系;(2)问为多少时,四边形的面积最大?这个最大面积为多少?21.如图,直三棱柱中,点是棱的中点,点在棱上,已知,,(1)若点在棱上,且,求证:平面平面;(2)棱上是否存在一点,使得平面证明你的结论。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:最大,考点:数列单调性点评:求解本题的关键是由已知得到数列是递减数列,进而转化为寻找最小的正数项2、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.3、A【解析】

由正弦定理进行边化角,再由二倍角公式可得,则或,所以或,即可判断三角形的形状.【详解】由正弦定理得,则,因此在中,或,即或.故选:A【点睛】本题考查利用正弦定理进行边角互化,判断三角形形状,属于基础题.4、C【解析】

解:因为由正弦定理,所以又c<a所以,所以5、B【解析】

根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【点睛】本题考查了等比数列前项和的性质,考查了数学运算能力.6、A【解析】所求的全面积之比为:,故选A.7、B【解析】

先由数量积为,得出,求出的坐标,利用模长的坐标公式求解即可.【详解】由题意可得,则则故选:B【点睛】本题主要考查了向量模的坐标表示以及向量垂直的坐标表示,属于基础题.8、D【解析】

根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【点睛】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.9、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.10、B【解析】试题分析:该几何体是正方体在两个角各挖去四分之一个圆柱,因此.故选B.考点:三视图,体积.二、填空题:本大题共6小题,每小题5分,共30分。11、2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.12、【解析】由题意,得,,则.13、【解析】所求的等比中项为:.14、【解析】原式,因为,所以,且,所以原式.15、0【解析】

将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.16、【解析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)在中,由正弦定理及题设条件,化简得,即可求解.(2)由题意,根据题设条件,列出方程,求的,得到,即可求解周长.【详解】(1)在中,由正弦定理及已知得,化简得,,所以.(2)因为,所以,又的面积为,则,则,所以的周长为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1)144;(2)5.【解析】

(1)由同角的三角函数关系,由,可以求出的值,再由面积公式可以求出的值,最后利用平面向量数量积的公式求出的值;(2)由(1)可知的值,再结合已知,可以求出的值,由余弦定理可以求出的值.【详解】(1),又因为的面积是30,所以,因此(2)由(1)可知,与联立,组成方程组:,解得或,不符合题意舍去,由余弦定理可知:.【点睛】本题考查了同角的三角函数关系、三角形面积公式、余弦定理、平面向量的数量积运算,本题求,可以不求出的值也可以,计算如下:19、(1)能接到;(2)不能接到【解析】

(1)在中由条件可得,,进一步可得为等边三角形,然后计算运动到点所需时间即可判断;(2)建立平面直角坐标系,作于,求出直线的方程,然后计算到直线的距离即可判断.【详解】(1)如图所示,在中,,,,,,由题意可知,如果不运动,经过,可以接到球,在上取点,使得,,为等边三角形,,,队员运动到点要,此时球运动了.所以能接到球.(2)建立如图所示的平面直角坐标系,作于,所以直线的方程为:,经过,运动了.点到直线的距离,所以以为圆心,半径长为的圆与直线相离.故改变(1)的方向前去截球,不能截到球.【点睛】本题主要考查了三角形的实际应用,以及点到直线的距离的应用,考查了推理与运算能力,属中档题.20、(1);(2)θ=时,四边形OACB的面积最大,其最大面积为.【解析】

(1)根据余弦定理可求得(2)先表示出△ABC的面积及△OAB的面积,进而表示出四边形OACB的面积,并化简函数的解析式为正弦型函数的形式,再结合正弦型函数最值的求法进行求解.【详解】(1)由余弦定理得则(2)四边形OACB的面积=△OAB的面积+△ABC的面积则△ABC的面积△OAB的面积•OA•OB•sinθ•2•4•sinθ=4sinθ四边形OACB的面积4sinθ=sin(θ﹣)∴当θ﹣=,即θ=时,四边形OACB的面积最大,其最大面积为.【点睛】本题考查利用正余弦定理求解面积最值,其中准确列出面积表达式是关键,考查化简求值能力,是中档题21、(1)见解析;(2)见解析【解析】

(1)通过证明,进而证明平面再证明平面平面;(2)取棱的中点,连接交于,结合三角形重心的性质证明,从而证明平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论