




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省泉州市安溪一中高一数学第二学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在处取最小值,则等于()A.3 B. C. D.42.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”3.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.5.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.6.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.7.已知为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是()A.②③ B.①③ C.②④ D.①④8.下列大小关系正确的是()A.B.C.D.9.直线的倾斜角的取值范围是()A. B. C. D.10.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足则的最小值为__________.12.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.13.已知直线与直线互相平行,则______.14.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.15.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.16.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?18.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)已知数列的前项和,,求数列,的前项和.19.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.20.已知,,与的夹角为,,,当实数为何值时,(1);(2).21.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.2、A【解析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【点睛】本题考查了互斥事件的定义.是基础题.3、B【解析】
先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.4、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.5、B【解析】
三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.6、D【解析】
先还原几何体,再根据形状求表面积.【详解】由三视图知,该几何体的直观图如图所示,其表面积为,故选.【点睛】本题考查三视图以及几何体表面积,考查空间想象能力以及基本求解能力,属中档题.7、B【解析】
利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.8、C【解析】试题分析:因为,,,所以。故选C。考点:不等式的性质点评:对于指数函数和对数函数,若,则函数都为增函数;若,则函数都为减函数。9、B【解析】
由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.【详解】解:直线的斜率为,,根据正切函数的性质可得倾斜角的取值范围是故选:.【点睛】本题考查直线的斜率与倾斜角的关系,属于基础题.10、D【解析】
根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【点睛】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。12、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;分层抽样。13、【解析】
由两直线平行得,,解出值.【详解】由直线与直线互相平行,得,解得.故答案为:.【点睛】本题考查两直线平行的性质,两直线平行,一次项系数之比相等,但不等于常数项之比,属于基础题.14、【解析】
由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于容易题.15、262【解析】
根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.16、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40m考点:解三角形.18、(1),(2)【解析】
(1)根据题意得到,解方程组即可.(2)首先根据,得到,再利用错位相减法即可求出.【详解】(1)有题知,解得.所以.(2)当时,,当时,.检查:当时,.所以,.①,②,①②得:,.【点睛】本题第一问考查等差数列的性质,第二问考查利用错位相减法求数列的前项和,同时考查了学生的计算能力,属于中档题.19、(1)证明见解析(2)证明见解析【解析】
(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.20、(1);(2).【解析】试题分析:(1)利用平面向量共线的判定条件进行求解;(2),利用平面向量的数量积为0进行求解.试题解析:(1)若,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 极简学习2025年VFP试题及答案
- 理解C语言程序的核心概念试题及答案
- 全面解析2025年计算机二级C语言考试的试题及答案
- 防水合同的安全协议书
- 2025年嵌入式创新能力考察试题及答案
- 有关ACCESS考试的试题及答案常识
- 嵌入式应用的性能优化策略试题及答案
- 食品代理销售合同协议书
- 嵌入式技术发展动态试题及答案考量
- 转让合同协议书有照片
- 2025年高考历史考纲(完整版)
- GB/T 24815-2009起重用短环链吊链等用6级普通精度链
- 线描画基本功教学课件
- 船上投诉程序(中英文)
- DB37-T 3781-2019 政务服务中心能源消耗定额标准-(高清版)
- 重症胰腺炎(1)课件
- 科学素养全稿ppt课件(完整版)
- 克拉泼改进型电容三点式振荡器
- 介入导管室耗材准备及管理
- SPC基础知识培训教材-入门级_课件
- 计量经济学课程论文——论产业结构对我国GDP与经济增长的影响
评论
0/150
提交评论