浙江省湖州市长兴县、德清县、安吉县三县2024年高一下数学期末监测试题含解析_第1页
浙江省湖州市长兴县、德清县、安吉县三县2024年高一下数学期末监测试题含解析_第2页
浙江省湖州市长兴县、德清县、安吉县三县2024年高一下数学期末监测试题含解析_第3页
浙江省湖州市长兴县、德清县、安吉县三县2024年高一下数学期末监测试题含解析_第4页
浙江省湖州市长兴县、德清县、安吉县三县2024年高一下数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市长兴县、德清县、安吉县三县2024年高一下数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.2.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件3.已知直线的方程为,,则直线的倾斜角范围()A. B.C. D.4.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.25.已知等比数列的公比为,若,,则()A.-7 B.-5 C.7 D.56.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.7.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知,,则()A. B. C. D.9.已知,则下列不等式中成立的是()A. B. C. D.10.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值二、填空题:本大题共6小题,每小题5分,共30分。11.记Sn为等比数列{an}的前n项和.若,则S5=____________.12.已知角终边经过点,则__________.13.函数的最小正周期是________14.若,则______.15.公比为的无穷等比数列满足:,,则实数的取值范围为________.16.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,对于,,其中是常数.(1)试讨论:数列在什么条件下为等比数列,请说明理由;(2)设,且对任意的,有意义,数列的前项和为.若,求的最大值.18.已知,.求和的值.19.数列中,,(为常数,1,2,3,…),且.(1)求c的值;(2)求证:①;②;(3)比较++…+与的大小,并加以证明.20.如图,四边形是平行四边形,平面平面,,,,,,,为的中点.(1)求证:平面;(2)求证:平面平面.21.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称.,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D.函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.2、B【解析】

根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.3、B【解析】

利用直线斜率与倾斜角的关系即可求解.【详解】由直线的方程为,所以,即直线的斜率,由.所以,又直线的倾斜角的取值范围为,由正切函数的性质可得:直线的倾斜角为.故选:B【点睛】本题考查了直线的斜率与倾斜角之间的关系,同时考查了正弦函数的值域以及正切函数的性质,属于基础题.4、B【解析】

令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【点睛】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.5、A【解析】

由等比数列通项公式可构造方程求得,再利用通项公式求得结果.【详解】故选:【点睛】本题考查等比数列通项公式基本量的计算问题,考查基础公式的应用,属于基础题.6、D【解析】

先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.7、D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.8、C【解析】

利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【详解】,化简得,,则,,因此,,故选C.【点睛】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.9、D【解析】

由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【点睛】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.10、C【解析】

根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为,由已知,所以又,所以所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.12、4【解析】

根据任意角的三角函数的定义,结合同角三角函数的基本关系求解即可.【详解】因为角终边经过点,所以,因此.故答案为:4【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.13、【解析】

先利用二倍角余弦公式对函数解析式进行化简整理,进而利用三角函数最小正周期的公式求得函数的最小正周期.【详解】解:f(x)=1﹣2sin2x=cos2x∴函数最小正周期Tπ故答案为π.【点睛】本题主要考查了二倍角的化简和三角函数的周期性及其求法.考查了三角函数的基础的知识的应用.14、【解析】

由诱导公式求解即可.【详解】因为所以故答案为:【点睛】本题主要考查了利用诱导公式化简求值,属于基础题.15、【解析】

依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。16、(3)【解析】

根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当,且时,数列一定为等比数列.理由见解析;(2)【解析】

(1)利用等比数列的定义证明数列为等比数列.(2)利用(1)的结论,进一步求出数列的和及最大值.【详解】解:(1)对于,,,①.②①减②得,即,,.当,且时,数列一定为等比数列.(2)由(1)得,,由,得,即(或)由可解得.所以,.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在求数列的通项公式中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18、,【解析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.19、(1);(2)①见证明;②见证明;(3)++…+,证明见解析【解析】

(1)将代入,结合可求出的值;(2)可知,,即可证明结论;(3)由题意可得,从而可得到,求和可得,然后作差,通过讨论可比较二者大小.【详解】(1)由题意:,.而,得,即,解得或,因为,所以满足题意.(2)因为,所以.则.,因为,,所以,所以.(3)由,可得,从而,所以.因为,所以,所以.,,,,当n=1时,,故;当n=2时,,;当n≥3时,,则,.【点睛】本题主要考查了数列的递推关系式和数列的求和,考查了不等式的证明,考查了学生的逻辑推理能力与计算能力,属于难题.20、(1)见解析(2)见解析【解析】

(1)取中点,连接,,利用三角形中位线定理,结合已知,可以证明出四边形为平行四边形,利用平行四边形的性质和线面平行的判定定理可以证明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性质定理,可以得到平面,最后利用面面垂直的判断定理可以证明出平面平面.【详解】(1)取中点,连接,,在中,因为是中点所以且又因为,,所以且,即四边形为平行四边形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,进而由勾股定理的逆定理得又因为平面,平面,又因为平面所以平面又平面,所以平面平面【点睛】本题考查了线面平行、面面垂直的证明,考查了线面平行的判断定理、面面垂直的性质定理和判定定理,考查了推理论证能力.21、(Ⅰ)见解析(Ⅱ)【解析】试题分析:(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论