2024届云南省昆明八中数学高一下期末监测试题含解析_第1页
2024届云南省昆明八中数学高一下期末监测试题含解析_第2页
2024届云南省昆明八中数学高一下期末监测试题含解析_第3页
2024届云南省昆明八中数学高一下期末监测试题含解析_第4页
2024届云南省昆明八中数学高一下期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省昆明八中数学高一下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列(,)具有性质:对任意、(),与两数中至少有一个是该数列中的一项,对于命题:①若数列具有性质,则;②若数列,,()具有性质,则;下列判断正确的是()A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题2.从甲、乙、丙、丁四人中随机选出人参加志愿活动,则甲被选中的概率为()A. B. C. D.3.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.2 B.3 C.4 D.54.用数学归纳法证明n+1n+2⋯n+n=-2A.2k+1 B.22k+1 C.2k+1k+15.已知数列的前项和为,且,,则()A.127 B.129 C.255 D.2576.已知角的终边经过点,则=()A. B. C. D.7.设点是函数图象士的任意一点,点满足,则的最小值为()A. B. C. D.8.设等差数列的前项和为,若,,则的值为()A. B. C. D.9.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.10.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.把“五进制”数转化为“十进制”数是_____________12.已知正实数满足,则的最小值为__________.13.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.14.已知中,,且,则面积的最大值为__________.15.在中,,点在边上,若,的面积为,则___________16.已知,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.18.如图,在平面直角坐标系中,锐角、的终边分别与单位圆交于、两点.(1)如果,点的横坐标为,求的值;(2)已知点,函数,若,求.19.记数列的前项和为,已知点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.20.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.21.已知锐角三个内角、、的对边分别是,且.(1)求A的大小;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证.【详解】解:①若数列具有性质,取数列中最大项,则与两数中至少有一个是该数列中的一项,而不是该数列中的项,是该数列中的项,又由,;故①正确;②数列,,具有性质,,与至少有一个是该数列中的一项,且,若是该数列中的一项,则,,易知不是该数列的项,.若是该数列中的一项,则或或,a、若同,b、若,则,与矛盾,c、,则,综上.故②正确.故选:.【点睛】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.2、C【解析】分析:用列举法得出甲、乙、丙、丁四人中随机选出人参加志愿活动的事件数,从而可求甲被选中的概率.详解:从甲、乙、丙、丁四人中随机选出人参加志愿活动,包括:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁6种情况,甲被选中的概率为.故选C.点睛:本题考查用列举法求基本事件的概率,解题的关键是确定基本事件,属于基础题.3、C【解析】开始,输入,则,判断,否,循环,,则,判断,否,循环,则,判断,否,循环,则,判断,是,输出,结束.故选择C.4、B【解析】

要分清起止项,以及相邻两项的关系,由此即可分清增加的代数式。【详解】当n=k时,左边=k+1当n=k+1时,左边====k+1∴从k到k+1,左边需要增乘的代数式为22k+1【点睛】本题主要考查学生如何理解数学归纳法中的递推关系。5、C【解析】

利用迭代关系,得到另一等式,相减求出,判断数列是否为等比数列,利用等比数列求和公式可得.【详解】因为,,所以,相减得,,,又,所以,,所以数列是等比数列,所以,故选C.【点睛】本题考查等比数列的求和,数列通项公式的求法,考查计算求解能力,属于中档题.6、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.7、B【解析】

函数表示圆位于x轴下面的部分。利用点到直线的距离公式,求出最小值。【详解】函数化简得。圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题。8、D【解析】

利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.9、A【解析】

求出函数的周期,函数的奇偶性,判断求解即可.【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.10、C【解析】

由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、194【解析】由.故答案为:194.12、6【解析】

由题得,解不等式即得x+y的最小值.【详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.13、【解析】

计算得到,根据得到范围.【详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【点睛】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.14、【解析】

先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.15、【解析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.16、【解析】

先求出的平方值,再开方得到所求结果.【详解】【点睛】本题考查求解复合向量模长的问题,求解此类问题的关键是先求模长的平方,将其转化为已知向量运算的问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:(Ⅰ)证明:因,所以与确定平面.连接,因为为的中点,所以,同理可得.又,所以平面,因为平面,所以.(Ⅱ)设的中点为,连.在中,因为是的中点,所以,又,所以.在中,因为是的中点,所以,又,所以平面平面,因为平面,所以平面.【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.18、(1);(2)【解析】

(1)根据条件求出的正余弦值,利用两角和的余弦公式计算即可(2)利用向量的数量积坐标公式运算可得,由求出即可求解.【详解】(1),为锐角,则,点的横坐标为,即有,,则;(2)由题意可知,,,则,即,由,可得,则,即有..【点睛】本题主要考查了单位圆,三角函数的定义,同角三角函数之间的关系,向量数量积的坐标运算,属于中档题.19、(Ⅰ);(Ⅱ).【解析】

(1)本题首先可根据点在函数的图像上得出,然后根据与的关系即可求得数列的通项公式;(2)首先可根据数列的通项公式得出,然后根据裂项相消法求和即可得出结果。【详解】(1)由题意知.当时,;当时,,适合上式.所以.(2).则。【点睛】本题考查根据数列的前项和为求数列的通项公式,考查裂项相消法求和,与满足以及,考查计算能力,是中档题。20、(1)(2)【解析】

(1)设圆心坐标为,根据,求得,进而得到圆的方程;(2)由在圆上,则,得到,求得,进而求得圆的切线方程.【详解】(1)由题意,圆心在直线上,设圆心坐标为,由,即,所以,圆心,半径,圆的标准方程为.(2)设切线方程为,因为在圆上,所以,所以,又,所以,所以切线方程为,即,所以过的切线方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论