




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市八中学中考二模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是()A.4 B.3 C.2 D.12.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A. B. C. D.3.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.54.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形5.下列各数中,无理数是()A.0 B. C. D.π6.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是A.① B.④ C.②或④ D.①或③7.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A. B. C. D.8.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<49.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.1210.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A.20% B.11% C.10% D.9.5%二、填空题(共7小题,每小题3分,满分21分)11.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.12.如果关于x的方程(m为常数)有两个相等实数根,那么m=______.13.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.14.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.15.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=_____.16.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为17.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?19.(5分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).20.(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.21.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.22.(10分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.23.(12分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?24.(14分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.考点:二次函数图象与系数的关系.2、C【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.4、D【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.5、D【解析】
利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.6、D【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.故选D.7、D【解析】
先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.8、D【解析】
不等式先展开再移项即可解答.【详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.9、B【解析】
先算乘方,再算乘法即可.【详解】解:﹣22×3=﹣4×3=﹣1.故选:B.【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.10、C【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为.根据题意,得=1.解得,(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】
根据题意作出图形即可得出答案,【详解】如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.12、1【解析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为113、270【解析】
根据三角形的内角和与平角定义可求解.【详解】解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.14、.【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.【详解】设这两天此股票股价的平均增长率为x,由题意得(1﹣10%)(1+x)2=1.故答案为:(1﹣10%)(1+x)2=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为15、【解析】
延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.16、【解析】
因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.17、x<﹣2或0<x<2【解析】
仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.三、解答题(共7小题,满分69分)18、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,∴==6,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.19、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】
(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
(2)根据函数的特点得出a=m,--=0,,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.【详解】解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函数y1+y2的顶点坐标为(0,2c).【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.20、;2.【解析】
先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式===的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.21、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】
(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得,解得,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.22、(1)见解析;(2)1【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.【详解】(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形;(2)设AF=x.∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论