版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省高中联考2025届数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则函数的单调递增区间为()A. B. C. D.2.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.()A.4 B. C.1 D.24.若是等差数列,首项,,,则使前n项和成立的最大正整数n=()A.2017 B.2018 C.4035 D.40345.己知,,若轴上方的点满足对任意,恒有成立,则点纵坐标的最小值为()A. B. C.1 D.26.已知,则下列不等式中成立的是()A. B. C. D.7.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线8.已知两个非零向量,满足,则()A. B.C. D.9.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A.522 B.324 C.535 D.57810.若,且,恒成立,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知中,的对边分别为,若,则的周长的取值范围是__________.12.已知正实数x,y满足2x+y=2,则xy的最大值为______.13.若、分别是方程的两个根,则______.14.如果数据的平均数是,则的平均数是________.15.执行右边的程序框图,若输入的是,则输出的值是.16.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数的图象如图所示(1)求函数的解析式;(2)写出函数的单调递增区间(3)设不相等的实数,,且,求的值.18.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北的方向上,仰角为,行驶4km后到达B处,测得此山顶在西偏北的方向上.(1)求此山的高度(单位:km);(2)设汽车行驶过程中仰望山顶D的最大仰角为,求.19.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.20.一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:温度20253035产卵数/个520100325(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)参考数据:,,,,,,,,,,5201003251.6134.615.7821.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由题意利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【详解】函数,令,求得,可得函数的增区间为,,.再根据,,可得增区间为,,故选.【点睛】本题主要考查两角和的余弦公式的应用,考查余弦函数的单调性,属于基础题.2、C【解析】
依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.3、A【解析】
分别利用和差公式计算,相加得答案.【详解】故答案为A【点睛】本题考查了正切的和差公式,意在考查学生的计算能力.4、D【解析】
由等差数列的性质可得,,由等差数列前项和公式可得则,,得解.【详解】解:由是等差数列,又,所以,又首项,,则,,则,,即使前n项和成立的最大正整数,故选:D.【点睛】本题考查了等差数列的性质,重点考查了等差数列前项和公式,属中档题.5、D【解析】
由题意首先利用平面向量的坐标运算法则确定纵坐标的解析式,然后结合二次函数的性质确定点P纵坐标的最小值即可.【详解】设,则,,故,恒成立,即恒成立,据此可得:,故,当且仅当时等号成立.据此可得的最小值为,则的最小值为.即点纵坐标的最小值为2.故选D.【点睛】本题主要考查平面向量的坐标运算,二次函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.6、D【解析】
由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【点睛】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.7、B【解析】
利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.8、C【解析】
根据向量的模的计算公式,由逐步转化为,即可得到本题答案.【详解】由题,得,即,,则,所以.故选:C.【点睛】本题主要考查平面向量垂直的等价条件以及向量的模,化简变形是关键,考查计算能力,属于基础题.9、D【解析】
根据随机抽样的定义进行判断即可.【详解】第行第列开始的数为(不合适),,(不合适),,,,(不合适),(不合适),,(重复不合适),则满足条件的6个编号为,,,,,则第6个编号为本题正确选项:【点睛】本题主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.10、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.12、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.13、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.14、5【解析】
根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.15、24【解析】
试题分析:根据框图的循环结构,依次;;;.跳出循环输出.考点:算法程序框图.16、①③.【解析】
利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【点睛】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3);【解析】
(1)根据函数的最值可得,周期可得,代入最高点的坐标可得,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用在内的解就是和,即可得到结果.【详解】(1)由函数的图象可得,又因为函数的周期,所以,因为函数的图象经过点,即,所以,即,所以.(2)由,可得,可得函数的单调递增区间为:,(3)因为,所以,又因为可得,所以或,解得或,、因为且,,所以.【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.18、(1)km.(2)【解析】
(1)设此山高,再根据三角形中三角函数的关系以及正弦定理求解即可.(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,再计算到直线的距离即可.【详解】解:(1)设此山高,则,在中,,,.根据正弦定理得,即,解得(km).(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,所以过C作,垂足为E,连接DE.则,,,所以.【点睛】本题主要考查了解三角形在实际中的运用,需要根据题意找到对应的直角三角形中的关系,或利用正弦定理求解.属于中档题.19、(1),(2),,(3)【解析】
(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.20、(I)选择更适宜作为产卵数关于温度的回归方程类型;(II);(III)要使得产卵数不超过50,则温度控制在以下.【解析】
(I)由于散点图类似指数函数的图像,由此选择.(II)对;两边取以为底底而得对数,将非线性回归的问题转化为线性回归的问题,利用回归直线方程的计算公式计算出回归直线方程,进而化简为回归曲线方程.(III)令,解指数不等式求得温度的控制范围.【详解】(I)依散点图可知,选择更适宜作为产卵数关于温度的回归方程类型。(II)因为,令,所以与可看成线性回归,,所以,所以,即,(III)由即,解得,要使得产卵数不超过50,则温度控制在以下。【点睛】本小题主要考查散点图的判断,考查非线性回归的求解方法,考查线性归回直线方程的计算公式,考查了利用回归方程进行预测.属于中档题.解题的关键点有两个,首先是根据散点图选择出恰当的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校业务广告合同范本
- 投标公司的合作协议书
- 委托购货方付款协议书
- 建筑工地设计合同范本
- 承包绿篱修剪合同范本
- 广州燃气买卖合同范本
- 工厂装修安全合同范本
- 护坡挡墙劳务合同范本
- 承包经营合同解除协议
- 如何签订瓷砖合同范本
- 2025宁夏石嘴山银行招聘53人考试题库附答案
- 2026年会计服务协议
- 工地临时设施搭建施工方案
- 2025网格员考试理论题目及答案
- 2026年洗车店上门服务推广实操手册
- 沥青混凝土运输安全管理实施方案
- 2025至2030工业远程终端单元(RTU)行业调研及市场前景预测评估报告
- 门禁系统调试测试方案
- 2026届上海市交大附中高二化学第一学期期末统考模拟试题含答案
- 中药硬膏贴敷疗法
- 光伏发电工程质量管理办法
评论
0/150
提交评论