2025届甘肃省张掖市山丹县一中高一数学第二学期期末统考试题含解析_第1页
2025届甘肃省张掖市山丹县一中高一数学第二学期期末统考试题含解析_第2页
2025届甘肃省张掖市山丹县一中高一数学第二学期期末统考试题含解析_第3页
2025届甘肃省张掖市山丹县一中高一数学第二学期期末统考试题含解析_第4页
2025届甘肃省张掖市山丹县一中高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省张掖市山丹县一中高一数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若在是减函数,则的最大值是A. B. C. D.2.函数的图象()A.关于点(-,0)对称 B.关于原点对称 C.关于y轴对称 D.关于直线x=对称3.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.34.已知为等比数列的前项和,,,则A. B. C. D.115.已知直线x+ay+4=0与直线ax+4y-3=0互相平行,则实数a的值为()A.±2 B.2 C.-2 D.06.在中,已知,.若最长边为,则最短边长为()A. B. C. D.7.过点作圆的切线,且直线与平行,则与间的距离是()A. B. C. D.8.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形9.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.10.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则___________.12._________________.13.若,则=.14.己知中,角所対的辻分別是.若,=,,则=______.15.若向量与的夹角为,与的夹角为,则______.16.若数列的前4项分别是,则它的一个通项公式是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.18.求函数的最大值19.已知等差数列满足,的前项和为.(1)求及;(2)记,求20.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)21.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值.详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1).(2)周期(3)由求对称轴,(4)由求增区间;由求减区间.2、A【解析】

关于点(-,0)对称,选A.3、A【解析】

利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【点睛】本题考查正弦定理及余弦定理推论的应用.4、C【解析】

由题意易得数列的公比代入求和公式计算可得.【详解】设等比数列公比为q,,则,解得,,故选:C.【点睛】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.5、A【解析】

根据两直线平性的必要条件可得4-a【详解】∵直线x+ay+4=0与直线ax+4y-3=0互相平行;∴4×1-a⋅a=0,即4-a2=0当a=2时,直线分别为x+2y+4=0和2x+4y-3=0,平行,满足条件当a=-2时,直线分别为x-2y+4=0和-2x+4y-3=0,平行,满足条件;所以a=±2;故答案选A【点睛】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题。6、A【解析】试题分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,为最长边,为最短边,由正弦定理:,解得.考点:正弦定理.7、D【解析】由题意知点在圆C上,圆心坐标为,所以,故切线的斜率为,所以切线方程为,即.因为直线l与直线平行,所以,解得,所以直线的方程是-4x+3y-8=0,即4x-3y+8=0.所以直线与直线l间的距离为.选D.8、D【解析】

先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题9、A【解析】

计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.10、D【解析】

根据基本不等式、不等式的性质即可【详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【点睛】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.12、3【解析】

分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.

故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,13、【解析】.14、1【解析】

应用余弦定理得出,再结合已知等式配出即可.【详解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案为1.【点睛】本题考查余弦定理,掌握余弦定理是解题关键,解题时不需要求出的值,而是用整体配凑的方法得出配凑出,这样可减少计算.15、【解析】

根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【详解】如图所示,,,所以在中有:,则,故.【点睛】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.16、【解析】

根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【点睛】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解析】

(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出结果;(3)先令,将原问题转化为求的最大值,进而可求出结果.【详解】(1)记该人在A公司第年收入为,在B公司连续工作年收入为,由题意可得:,,,;(2)由(1),当时,该人在A公司工资收入的总量为:(元);该人在B公司工资收入的总量为:(元)显然A公司工资总量高,所以应选择A公司;(3)令,则原问题即等价于求的最大值;当时,,若,则,即,解得;又,所以,因此,当时,;当时,.所以是数列的最大项,(元),即在A公司工作比在B公司工作的月工资收入最多可以多元.【点睛】本题主要考查数列的应用,熟记等差数列与等比数列的通项公式与求和公式即可,属于常考题型.18、最大值为5【解析】

本题首先可以根据同角三角函数关系以及配方将函数化简为,然后根据即可得出函数的最大值.【详解】,因为,所以当时,即,函数最大,令,,故最大值为.【点睛】本题考查同角三角函数关系以及一元二次函数的相关性质,考查的公式为,考查计算能力,体现了综合性,是中档题.19、(1),(2)【解析】

(1)利用等差数列的通项公式,结合,可以得到两个关于首项和公差的二元一次方程,解这个方程组即可求出首项和公差,最后利用等差数列的通项公式和前项和公式求出及;(2)利用裂项相消法可以求出.【详解】解:(1)设等差数列的公差为d,(2)由(1)知:【点睛】本题考查了等差数列的通项公式和前项和公式,考查了裂项相消法求数列前项和,考查了数学运算能力.20、【解析】

过作的垂线,垂足为,再利用直角三角形与正弦定理求解【详解】解:设人的位置为,塔底为,塔顶为,过作的垂线,垂足为,则,,,,所以,答:电视塔的高为约.【点睛】本题考查利用正弦定理测量高度,考查基本分析求解能力,属基础题21、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】

(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论