山东省青岛市西海岸新区胶南第一高级中学高三下学期新高考数学试题(月考)独立作业1_第1页
山东省青岛市西海岸新区胶南第一高级中学高三下学期新高考数学试题(月考)独立作业1_第2页
山东省青岛市西海岸新区胶南第一高级中学高三下学期新高考数学试题(月考)独立作业1_第3页
山东省青岛市西海岸新区胶南第一高级中学高三下学期新高考数学试题(月考)独立作业1_第4页
山东省青岛市西海岸新区胶南第一高级中学高三下学期新高考数学试题(月考)独立作业1_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市西海岸新区胶南第一高级中学高三下学期新高考数学试题(月考)独立作业1注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元2.已知满足,则的取值范围为()A. B. C. D.3.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为()A. B. C. D.4.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.5.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.56.函数的大致图象为()A. B.C. D.7.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1 B.2 C.3 D.48.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定9.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A. B. C. D.10.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.函数的部分图象大致为()A. B.C. D.12.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.14.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____.15.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.16.复数(其中i为虚数单位)的共轭复数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)(1)求抛物线Γ的方程;(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.18.(12分)已知多面体中,、均垂直于平面,,,,是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.19.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.21.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.22.(10分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.2、C【解析】

设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.3、C【解析】

分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.故选:C【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.4、C【解析】

模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.5、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6、A【解析】

利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,,,.故选:A.【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.7、B【解析】

对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【详解】因为,所以周期.对于①,因为,所以,即,故①错误;对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故③正确;对于④,因为,且,所以,解得,又,所以,故④正确.故选:B.【点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.8、C【解析】

由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.9、B【解析】

函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B.【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.10、B【解析】

化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【详解】对应的点的坐标为在第二象限故选:B.【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.11、B【解析】

图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。12、C【解析】

根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【点睛】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.14、x﹣y=0.【解析】

先将x=1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【详解】由题意得.故切线方程为y﹣1=x﹣1,即x﹣y=0.故答案为:x﹣y=0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.15、20,21【解析】

由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.【详解】解:由题意知数列的奇数项构成公差为的等差数列,偶数项构成公比为的等比数列,则;.当时,,.当时,,.由此可知,满足的正整数的所有取值为20,21.故答案为:20,21【点睛】本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.16、【解析】

利用复数的乘法运算求出,再利用共轭复数的概念即可求解.【详解】由,则.故答案为:【点睛】本题考查了复数的四则运算以及共轭复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)y2=4x;;(2)直线NL恒过定点(﹣3,0),理由见解析.【解析】

(1)根据抛物线的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,﹣2),B(3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y2=12,然后表示直线NL的方程为:y﹣y1(x),代入化简求解.【详解】(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以抛物线的方程为:y2=4x;(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y12=4x1,y22=4x2,直线MN的斜率kMN,则直线MN的方程为:y﹣y0(x),即y①,同理可得直线ML的方程整理可得y②,将A(3,﹣2),B(3,﹣6)分别代入①,②的方程可得,消y0可得y1y2=12,易知直线kNL,则直线NL的方程为:y﹣y1(x),即yx,故yx,所以y(x+3),因此直线NL恒过定点(﹣3,0).【点睛】本题主要考查了抛物线的方程及直线与抛物线的位置关系,直线过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1)见解析;(2).【解析】

(1)取的中点,连接、,推导出四边形为平行四边形,可得出,由此能证明平面;(2)由,得平面,则点到平面的距离等于点到平面的距离,在平面内过点作于点,就是到平面的距离,也就是点到平面的距离,由此能求出直线与平面所成角的正弦值.【详解】(1)取的中点,连接、,、分别为、的中点,则且,、均垂直于平面,且,则,且,所以,四边形为平行四边形,则,平面,平面,因此,平面;(2)由,平面,平面,平面,点到平面的距离等于点到平面的距离,在平面内过点作于点,平面,平面,,,,平面,即就是到平面的距离,也就是点到平面的距离,设,则到平面的距离,,因此,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19、;.【解析】

连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.20、(1)(2)【解析】

(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,,即,所以对恒成立∴,得;当时,,即,所以对任意恒成立,∴,得∴,综上,.【点睛】本题考查分类讨论解绝对值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论