版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省浑源县第七中学校数学高一下期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.2.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.在中,,,,则的面积是()A. B. C.或 D.或4.已知,,则()A.2 B. C.4 D.5.已知等差数列的前项和为,首项,若,则当取最大值时,的值为()A. B. C. D.6.一元二次不等式的解集为()A. B.C. D.7.若,则在中,正数的个数是()A.16 B.72 C.86 D.1008.已知,,且,则在方向上的投影为()A. B. C. D.9.在棱长为1的正方体中,点在线段上运动,则下列命题错误的是()A.异面直线和所成的角为定值 B.直线和平面平行C.三棱锥的体积为定值 D.直线和平面所成的角为定值10.式子的值为()A. B.0 C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为________12.已知数列是等差数列,若,,则公差________.13.正方体中,异面直线和所成角的余弦值是________.14.函数的最小正周期是________.15.在中,,,,则的面积是__________.16.在数列an中,a1=2,a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.18.(1)已知,,且、都是第二象限角,求的值.(2)求证:.19.若,解关于的不等式.20.设是一个公比为q的等比数列,且,,成等差数列.(1)求q;(2)若数列前4项的和,令,求数列的前n项和.21.已知数列中,,.(1)求数列的通项公式;(2)求数列的前项和;(3)若对任意的,都有成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.2、C【解析】
由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.3、C【解析】
先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.4、C【解析】
先求出的坐标,再利用向量的模的公式求解.【详解】由题得=(0,4)所以.故选C【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、B【解析】
设等差数列的公差为,,由,可得,令求出正整数的最大值,即可得出取得最大值时对应的的值.【详解】设等差数列的公差为,由,得,可得,令,,可得,解得.因此,最大.故选:B.【点睛】本题考查等差数列前项和的最值,一般利用二次函数的基本性质求解,也可由数列项的符号求出正整数的最大值来求解,考查计算能力,属于中等题.6、C【解析】
根据一元二次不等式的解法,即可求得不等式的解集,得到答案.【详解】由题意,不等式,即或,解得,即不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与计算能力,属于基础题.7、C【解析】
令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.8、C【解析】
通过数量积计算出夹角,然后可得到投影.【详解】,,即,,在方向上的投影为,故选C.【点睛】本题主要考查向量的几何背景,建立数量积方程是解题的关键,难度不大.9、D【解析】
结合条件和各知识点对四个选项逐个进行分析,即可得解.【详解】,在棱长为的正方体中,点在线段上运动易得平面,平面,,故这两个异面直线所成的角为定值,故正确,直线和平面平行,所以直线和平面平行,故正确,三棱锥的体积还等于三棱锥的体积,而平面为固定平面且大小一定,,而平面点到平面的距离即为点到该平面的距离,三棱锥的体积为定值,故正确,由线面夹角的定义,令与的交点为,可得即为直线和平面所成的角,当移动时这个角是变化的,故错误故选【点睛】本题考查了异面直线所成角的概念、线面平行及线面角等,三棱锥的体积的计算可以进行顶点轮换及线面平行时,直线上任意一点到平面的距离都相等这一结论,即等体积法的转换.10、D【解析】
利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【详解】cos()=coscos,故选D.【点睛】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、1【解析】
利用等差数列的通项公式即可得出.【详解】设等差数列公差为,∵,,∴,解得=1.故答案为:1.【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题.13、【解析】
由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.14、【解析】
根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.15、【解析】
计算,等腰三角形计算面积,作底边上的高,计算得到答案.【详解】,过C作于D,则故答案为【点睛】本题考查了三角形面积计算,属于简单题.16、2+【解析】
因为a1∴a∴=(=2+ln三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值,最小值为,最小正周期;(2)【解析】
(1)根据即可求出最值,利用即可求出最小正周期;(2)根据复合函数的单调性,令即可得解.【详解】(1),函数的最大值为,最小值为;函数的最小正周期为.(2)令,得:,故函数的增区间为.【点睛】本题考查了三角函数的性质以及单调区间的求解,属于基础题.18、(1);(2)见解析【解析】
(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.19、当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为⌀.【解析】
试题分析:(1),利用,可得,分三种情况对讨论的范围:0<a<1,a<0,a=0,分别求得相应情况下的解集即可.试题解析:不等式>1可化为>0.因为a<1,所以a-1<0,故原不等式可化为<0.故当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为,当a=0时,原不等式的解集为⌀.20、(1);(2)答案不唯一,详见解析.【解析】
(1)运用等差中项性质和等比数列的通项公式,解方程可得公比;(2)讨论公比,结合等差数列和等比数列的求和公式,以及错位相减法求和,即可得到所求和.【详解】(1)因为是一个公比为的等比数列,所以.因为成等差数列,所以即.解得.(2)①若q=2,又它的前4和,得,解得所以.因为,∴,2,∴,∴②若q=1,又它的前4和,即4因为,所以.【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.21、(1)(2)(3)【解析】
(1)利用递推公式求出,,递推到当时,,两个式子相减,得到,进而求出数列的通项公式;(2)运用错位相减法可以求出数列的前项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 循证护理在术后尿潴留预防中的标准化策略
- 2025年户外运动组织协议
- 2025年工业制氧机运输合同
- 延续护理背景下护士角色转型的技能更新需求
- 康复期患者健康生活方式重建的阶梯式策略
- 小企业家财务培训课件
- 荆职院护理学基础课件07环境
- 帕金森病DBS术后疼痛的管理策略
- 工作压力与内分泌失调的干预策略
- 医疗卫生人员跨文化沟通礼仪
- 纺织公司“十五五”发展规划(2025-2025 年)
- 江苏省常州市2024-2025学年高一年级上册期末质量调研物理试卷(解析版)
- 药厂述职报告
- 资源与运营管理-第一次形考任务-国开-参考资料
- 电源适配器检验作业指导
- 病理检验技术(第3版)课件 第10章 细胞学检查技术
- 部编本语文五年级上册全册课内句子训练带答案
- DL∕T 1938-2018 垃圾发电厂炉渣处理技术规范
- 2022年华东师范大学公共课《马克思主义基本原理概论》期末试卷B(有答案)
- 六年级上册生命生态安全教案及教学计划
- 新生儿科进修总结汇报
评论
0/150
提交评论