




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省黄山市屯溪区屯溪第一中学2025届高一下数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B. C. D.2.已知直线,,则与之间的距离为()A. B. C.7 D.3.已知数列满足,,则的值为()A. B. C. D.4.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.5.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=6.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)7.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.8.在锐角中,角的对边分别为.若,则角的大小为()A. B.或 C. D.或9.等差数列中,,且,且,是其前项和,则下列判断正确的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于10.若角的终边过点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.“”是“数列依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).12.已知向量,满足,且在方向上的投影是,则实数_______.13.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.14.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.15.设x、y满足约束条件,则的取值范围是______.16.给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中;⑤函数的图像与直线有且仅有两个不同的交点,则的取值范围为.以上五个命题中正确的有(填写所有正确命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列满足,;数列的前项和为,且(1)求数列和的通项公式;(2)若,求数列的前项和.18.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.19.已知函数.(1)求的单调递增区间;(2)求不等式的解集.20.已知函数.(1)求函数的最小正周期;(2)求函数的单调递增区间.21.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。2、D【解析】
化简的方程,再根据两平行直线的距离公式,求得两条平行直线间的距离.【详解】,由于平行,故有两条平行直线间的距离公式得距离为,故选D.【点睛】本小题主要考查两条平行直线间的距离公式,属于基础题.3、B【解析】
由,得,然后根据递推公式逐项计算出、的值,即可得出的值.【详解】,,则,,,因此,,故选B.【点睛】本题考查数列中相关项的计算,解题的关键就是递推公式的应用,考查计算能力,属于基础题.4、A【解析】渐近线为,时,,所以,即,,,故选A.5、D【解析】
由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.6、C【解析】
(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【点睛】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.7、A【解析】
根据20组随机数可知该运动员射击4次恰好命中3次的随机数共8组,据此可求出对应的概率.【详解】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.【点睛】本题考查了利用随机模拟数表法求概率,考查了学生对基础知识的掌握.8、A【解析】
利用正弦定理,边化角化简即可得出答案.【详解】由及正弦定理得,又,所以,所以,又,所以.故选A【点睛】本题考查正弦定理解三角形,属于基础题.9、C【解析】
由,且可得,,,,结合等差数列的求和公式即等差数列的性质即可判断.【详解】,且,,数列的前项都是负数,,,,由等差数列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故选:C.【点睛】本题考查等差数列前项和符号的判断,解题时要充分结合等差数列下标和的性质以及等差数列求和公式进行计算,考查分析问题和解决问题的能力,属于中等题.10、D【解析】
解法一:利用三角函数的定义求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函数的定义求出,再利用二倍角公式以及弦化切的思想求出的值.【详解】解法一:由三角函数的定义可得,,,故选D.解法二:由三角函数定义可得,所以,,故选D.【点睛】本题考查三角函数的定义与二倍角公式,考查同角三角函数的定义,利用三角函数的定义求值是解本题的关键,同时考查了同角三角函数基本思想的应用,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、必要非充分【解析】
通过等差数列的下标公式,得到必要条件,通过举特例证明非充分条件,从而得到答案.【详解】因为数列依次成等差数列,所以根据等差数列下标公式,可得,当,时,满足,但不能得到数列依次成等差数列所以综上,“”是“数列依次成等差数列”的必要非充分条件.故答案为:必要非充分.【点睛】本题考查必要非充分条件的证明,等差数列通项的性质,属于简单题.12、1【解析】
在方向上的投影为,把向量坐标代入公式,构造出关于的方程,求得.【详解】因为,所以,解得:,故填:.【点睛】本题考查向量的数量积定义中投影的概念、及向量数量积的坐标运算,考查基本运算能力.13、【解析】
直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.14、1或;【解析】
要使最大,则最小.【详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【点睛】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.15、【解析】
由约束条件可得可行域,将问题转化为在轴截距取值范围的求解;通过直线平移可确定的最值点,代入点的坐标可求得最值,进而得到取值范围.【详解】由约束条件可得可行域如下图阴影部分所示:将的取值范围转化为在轴截距的取值范围问题由平移可知,当过图中两点时,在轴截距取得最大和最小值,,的取值范围为故答案为:【点睛】本题考查线性规划中的取值范围问题的求解,关键是能够将问题转化成直线在轴截距的取值范围的求解问题,通过数形结合的方式可求得结果.16、①②⑤【解析】试题分析:①将代入可得函数最大值,为函数对称轴;②函数的图象关于点对称,包括点;③,③错误;④利用诱导公式,可得不同于的表达式;⑤对进行讨论,利用正弦函数图象,得出函数与直线仅有有两个不同的交点,则.故本题答案应填①②⑤.考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于和的最小正周期为.若为偶函数,则当时函数取得最值,若为奇函数,则当时,.若要求的对称轴,只要令,求.若要求的对称中心的横坐标,只要令即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)分别利用累加法、数列的递推公式得到数列和数列的通项公式.(2)利用数列求和的错位相减即可得到数列的前项和.【详解】(1),……,,以上个式子相加得:当时,=当时,,符合上式,(2)①②①-②得【点睛】已知求数列的通项公式时,可采用累加法得到通项公式,通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)的前项和采用错位相减法.18、(1);(2)【解析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因为的顶点在单位圆上,所以,所以,由余弦定理,..点睛:本题主要考查了正弦定理、两角和的正弦函数公式、同角三角函数基本关系式、余弦定理、三角形面积公式在解三角形中的应用,熟练掌握相关公式是解题的关键,考查了转化思想和数形结合思想的应用,属于中档题.19、(1),;(2),【解析】
(1)由余弦函数单调区间的求法,解不等式即可得解;(2)解三角不等式即可得解.【详解】解:解:(1)令,,解得,,故的单调递增区间为,.(2)因为,所以,即,所以,,解得,.故不等式的解集为,.【点睛】本题考查了余弦函数单调区间的求法,重点考查了三角不等式的解法,属基础题.20、(1)(2)【解析】
(1)通过降次公式和辅助角公式化简函数得到,再根据周期公式得到答案.(2)根据(1)中函数表达式,直接利用单调区间公式得到答案.【详解】(1)由题意得.可得:函数的最小正周期(2)由,得,所以函数的单调递增区间为.【点睛】本题考查三角函数的最小正周期,函数的单调区间,将函数化简为标准形式是解题的关键,意在考查学生对于三角函数性质的应用和计算能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦作空压机采购合同范本
- 风电运维总包合同协议书
- 甲方转乙方猎头合同范本
- 物料设计制作合同协议书
- 网络平台会员协议书范本
- 特种车辆雇佣协议书模板
- 美业学徒合同协议书模板
- 离婚法院调解协议书范本
- 项目文化墙设计合同范本
- 银行个性化分期协议合同
- 2025年中国冷镦钢线行业市场发展前景及发展趋势与投资战略研究报告
- 山东档案职称考试《档案基础理论》完整题(附答案)
- 2025年 吉林省长白山公安局警务辅助人员招聘考试试卷附答案
- 运动与青少年健康成长
- 2025至2030中国环氧活性稀释剂市场未来趋势及前景规划建议报告
- (新版)水利水电安全员考试题库及答案(含各题型)
- 研发项目过程管理制度
- 中学校园整体修缮工程项目可行性研究报告书
- 中国区域陆气耦合强度与极端高温关系的深度剖析
- DB61T-复齿鼯鼠饲养管理规范
- 出差报销标准协议
评论
0/150
提交评论