版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省微山二中高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③相等的角在直观图中仍然相等;④正方形的直观图是正方形.以上结论正确的是()A.①② B.① C.③④ D.①②③④2.已知M为z轴上一点,且点M到点与点的距离相等,则点M的坐标为()A. B. C. D.3.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的()倍.A.95 B.2 C.524.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.设,,,若则,的值是()A., B.,C., D.,6.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中正确的个数()①AC∥平面BEF;②B、C、E、F四点可能共面;③若EF⊥CF,则平面ADEF⊥平面ABCD;④平面BCE与平面BEF可能垂直A.0 B.1 C.2 D.37.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.128.若,,那么在方向上的投影为()A.2 B. C.1 D.9.函数的最小正周期为,则的图象的一条对称轴方程是()A. B. C. D.10.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.12.在中,,过直角顶点作射线交线段于点,则的概率为______.13.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.14.对于任意x>0,不等式3x2-2mx+12>015.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____16.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.18.某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.(1)求应从小学、中学中分别抽取的学校数目;(2)若从抽取的5所学校中抽取2所学校作进一步数据分析:①列出所有可能抽取的结果;②求抽取的2所学校至少有一所中学的概率.19.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.20.随着中国经济的加速腾飞,现在手有余钱的中国家庭数量越来越多,在房价居高不下、股市动荡不定的形势下,为了让自己的财富不缩水,很多家庭选择了投资理财.为了了解居民购买理财产品的情况,理财公司抽样调查了该市2018年10户家庭的年收入和年购买理财产品支出的情况,统计资料如下表:年收入x(万元)204040606060707080100年理财产品支出y(万元)9141620211918212223(1)由该样本的散点图可知y与x具有线性相关关系,请求出回归方程;(求时利用的准确值,,的最终结果精确到0.01)(2)若某家庭年收入为120万元,预测某年购买理财产品的支出.(参考数据:,,,)21.在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为、和(单位:万件),依据销售统计数据发现形成如下营销趋势:,(其中,为常数,),已知万件,万件,万件.(1)求,的值,并写出与满足的关系式;(2)证明:逐月递增且控制在2万件内;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由直观图的画法和相关性质,逐一进行判断即可.【详解】斜二侧画法会使直观图中的角度不同,也会使得沿垂直于水平线方向的长度与原图不同,而多边形的边数不会改变,同时平行直线之间的位置关系依旧保持平行,故:①②正确,③和④不对,因为角度会发生改变.故选:A.【点睛】本题考查斜二侧画法的相关性质,注意角度是发生改变的,这是易错点.2、C【解析】
根据题意先设,再根据空间两点间的距离公式,得到,再由点M到点与点的距离相等建立方程求解.【详解】设根据空间两点间的距离公式得因为点M到点与点的距离相等所以解得所以故选:C【点睛】本题主要考查了空间两点间的距离公式,还考查了运算求解的能力,属于基础题.3、D【解析】
设最小球的半径为R,根据比例关系即可得到另外两个球的半径,再利用球的体积公式表示出三个球的体积,即可得到结论。【详解】设最小球的半径为R,由三个球的半径的比是1:2:3,可得另外两个球的半径分别为2R,3R;∴最小球的体积V1=43π∴V故答案选D【点睛】本题主要考查球体积的计算公式,属于基础题。4、B【解析】
由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【点睛】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】
由向量相等的充要条件可得:,列出方程组,即可求解,得到答案.【详解】由题意,向量,,,又因为,所以,所以,解得,故选B.【点睛】本题主要考查了平面向量的数乘运算及向量相等的充要条件,其中解答中熟记向量的共线条件,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】
根据折叠前后线段、角的变化情况,由线面平行、面面垂直的判定定理和性质定理对各命题进行判断,即可得出答案.【详解】对①,在图②中,连接交于点,取中点,连接MO,易证AOMF为平行四边形,即AC//FM,所以AC//平面BEF,故①正确;对②,如果B、C、E、F四点共面,则由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,这样四边形ADEF为平行四边形,与已知矛盾,故②不正确;对③,在梯形ADEF中,由平面几何知识易得EFFD,又EFCF,∴EF平面CDF,即有CDEF,∴CD平面ADEF,则平面ADEF平面ABCD,故③正确;对④,在图②中,延长AF至G,使得AF=FG,连接BG,EG,易得平面BCE平面ABF,BCEG四点共面.过F作FNBG于N,则FN平面BCE,若平面BCE平面BEF,则过F作直线与平面BCE垂直,其垂足在BE上,矛盾,故④错误.故选:C.【点睛】本题主要考查线面平行、线面垂直、面面垂直的判定定理和性质定理的应用,意在考查学生的直观想象能力和逻辑推理能力,属于中档题.7、C【解析】
由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.8、C【解析】
根据定义可知,在方向上的投影为,代入即可求解.【详解】,,那么在方向上的投影为.故选:C.【点睛】本题考查向量数量积的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础试题.9、B【解析】
根据最小正周期为求解与解析式,再求解的对称轴判断即可.【详解】因为最小正周期为,故.故,对称轴方程为,解得.当时,.故选:B【点睛】本题主要考查了三角函数最小正周期的应用以及对称轴的计算.属于基础题.10、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【点睛】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.12、【解析】
设,求出的长,由几何概型概率公式计算.【详解】设,由题意得,,∴的概率是.故答案为:.【点睛】本题考查几何概型,考查长度型几何概型.掌握几何概型概率公式是解题关键.13、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为14、(-∞,6)【解析】
先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.16、45【解析】
直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2);(3)详见解析.【解析】
(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【点睛】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.18、(1)3所、2所;(2)①共10种;②【解析】
(1)根据分层抽样的方法,得到分层抽样的比例,即可求解样本中小学与中学抽取的学校数目;(2)①3所小学分别记为;2所中学分别记为,利用列举法,即可求得抽取的2所学校的所有结果;②利用古典概型的概率计算公式,即可求得相应的概率.【详解】(1)学校总数为35所,所以分层抽样的比例为,计算各类学校应抽取的数目为:,故从小学、中学中分别抽取的学校数目为3所、2所.(2)①3所小学分别记为;2所中学分别记为应抽取的2所学校的所有结果为:共10种.②设“抽取的2所学校至少有一所中学”作为事件.其结果共有7种,所以概率为.【点睛】本题主要考查了分层抽样的应用,以及古典概型及其概率的计算,其中解答中认真审题,合理利用列举法求得基本事件的总数是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解析】
(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【点睛】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.20、(1),(2)万元【解析】
(1)由题意计算,求出回归系数,写出线性回归方程;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论