




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省泰州市泰兴一中数学高一下期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.已知向量,,如果向量与平行,则实数的值为()A. B. C. D.4.已知,则的最小值是()A.2 B.6 C.2 D.25.已知等差数列和的前项和分别为和,.若,则的取值集合为()A. B.C. D.6.在中,角,,的对边分别是,,,若,则()A. B. C. D.7.若,则下列不等式正确的是()A. B. C. D.8.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.9.设,,,则,,的大小关系是()A. B. C. D.10.在中,,则这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形二、填空题:本大题共6小题,每小题5分,共30分。11.点到直线的距离为________.12.平面四边形如图所示,其中为锐角三角形,,,则_______.13.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.14.______.15.设函数,则的值为__________.16.数列中,,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.18.已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值19.如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E为PD的中点,点F在PC上,且.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.20.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.21.已知.(1)化简;(2)若,且为第一象限角,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.2、C【解析】
利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,
只需将函数图象上所有的点向左平移个单位长度,
故选C.3、B【解析】
根据坐标运算求出和,利用平行关系得到方程,解方程求得结果.【详解】由题意得:,,解得:本题正确选项:【点睛】本题考查向量平行的坐标表示问题,属于基础题.4、B【解析】试题分析:因为,故.考点:基本不等式的运用,考查学生的基本运算能力.5、D【解析】
首先根据即可得出,再根据前n项的公式计算出即可。【详解】,选D.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,属于难题.等差数列的常用性质有:(1)通项公式的推广:
(2)若
为等差数列,
;(3)若是等差数列,公差为,
,则是公差
的等差数列;6、D【解析】
由题意,再由余弦定理可求出,即可求出答案.【详解】由题意,,设,由余弦定理可得:,则.故选D.【点睛】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.7、C【解析】
根据不等式性质,结合特殊值即可比较大小.【详解】对于A,当,满足,但不满足,所以A错误;对于B,当时,不满足,所以B错误;对于C,由不等式性质“不等式两边同时加上或减去同一个数或式子,不等式符号不变”,所以由可得,因而C正确;对于D,当时,不满足,所以D错误.综上可知,C为正确选项,故选:C.【点睛】本题考查了不等式大小比较,不等式性质及特殊值的简单应用,属于基础题.8、A【解析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.9、D【解析】
首先确定题中,,的取值范围,再根据大小排序即可.【详解】由题知,,,,所以排序得到.故选:D.【点睛】本题主要考查了比较指数对数的大小问题,属于基础题.10、B【解析】解:二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
根据点到直线的距离公式,代值求解即可.【详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【点睛】本题考查点到直线的距离公式,属基础题.12、.【解析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【详解】由题意,在中,,在中,,即,解得,或.若,则,,不合题意,舍去,所以.故答案为:.【点睛】本题考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解题关键.13、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.14、【解析】
,,故答案为.考点:三角函数诱导公式、切割化弦思想.15、【解析】
根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.16、1【解析】
利用极限运算法则求解即可【详解】故答案为:1【点睛】本题考查数列的极限,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和18、(1)(2)【解析】试题分析:(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值试题解析:(1)即(2)由,,,,,此时,考点:1.向量的数量积运算;2.三角函数化简及三角函数性质19、(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析.【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得点G的坐标,然后结合平面的法向量和直线AG的方向向量可判断直线是否在平面内.【详解】(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD,则PA⊥CD,由题意可知AD⊥CD,且PA∩AD=A,由线面垂直的判定定理可得CD⊥平面PAD.(Ⅱ)以点A为坐标原点,平面ABCD内与AD垂直的直线为x轴,AD,AP方向为y轴,z轴建立如图所示的空间直角坐标系,易知:,由可得点F的坐标为,由可得,设平面AEF的法向量为:,则,据此可得平面AEF的一个法向量为:,很明显平面AEP的一个法向量为,,二面角F-AE-P的平面角为锐角,故二面角F-AE-P的余弦值为.(Ⅲ)易知,由可得,则,注意到平面AEF的一个法向量为:,其且点A在平面AEF内,故直线AG在平面AEF内.20、(1)见解析;(2)【解析】
(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【点睛】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仙桃职业学院《材料基础化学实验》2023-2024学年第二学期期末试卷
- 山西省同煤二中2025届高三年级第一次教学质量诊断性联合考试语文试题含解析
- 三亚市白沙黎族自治县2025年数学三下期末经典试题含解析
- 山东省宁阳县市级名校2024-2025学年初三第二学期月考试卷(二)英语试题含答案
- 山东省潍坊市高密市2025届初三年级第二学期调研考试数学试题含解析
- 厦门理工学院《社会救助与社会福利》2023-2024学年第二学期期末试卷
- 南通科技职业学院《工程光学设计(双语)》2023-2024学年第二学期期末试卷
- 江苏省启东汇龙中学2025年初三第二次调研考试(物理试题文)试卷含解析
- 山东滨州阳信县2025届初三10份综合模拟检测试题含解析
- 绿色能源新能源汽车充电桩场地租赁与智能充电设备安装协议
- 买卖合同法律知识及风险防范培训课件
- 脑出血患者术后护理论文
- 9.2严格执法 (课件+视频)(部编版)
- 《运输方式和交通布局与区域发展的关系》
- 建筑电气武校刚课后参考答案
- 广东省2024年高考物理试题(附答案解析)
- 中国南水北调集团新能源投资有限公司招聘笔试题库2024
- 围手术期深静脉血栓预防的术中护理
- 工程项目成本管理的案例分析
- 合作收款合同范本
- 2024年四川省成都市中考物理试卷附答案
评论
0/150
提交评论