2025届云南师范大学实验中学高一数学第二学期期末经典模拟试题含解析_第1页
2025届云南师范大学实验中学高一数学第二学期期末经典模拟试题含解析_第2页
2025届云南师范大学实验中学高一数学第二学期期末经典模拟试题含解析_第3页
2025届云南师范大学实验中学高一数学第二学期期末经典模拟试题含解析_第4页
2025届云南师范大学实验中学高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南师范大学实验中学高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.2.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.153.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.4.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形5.若直线过两点,,则的斜率为()A. B. C.2 D.6.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.7.执行右面的程序框图,如果输入的n是4,则输出的P是A.8 B.5 C.3 D.28.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.9.执行如下的程序框图,则输出的是()A. B.C. D.10.方程的解集为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,则的值为________12.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.13.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.14.已知数列是等比数列,公比为,且,,则_________.15.函数的递增区间是__________.16.已知,,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.18.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.19.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.20.设数列的前项和为,已知(Ⅰ)求,并求数列的通项公式;(Ⅱ)求数列的前项和.21.设函数的定义域为R,当时,,且对任意实数m、n,有成立,数列满足,且.(1)求的值;(2)若不等式对一切都成立,求实数k的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.2、B【解析】

将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.3、B【解析】

由正弦定理可得3sinBsinA=4sin【详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【点睛】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.4、C【解析】

利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【点睛】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.5、C【解析】

直接运用斜率计算公式求解.【详解】因为直线过两点,,所以直线的斜率,故本题选C.【点睛】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.6、B【解析】

利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.7、C【解析】试题分析:k=1,满足条件k<4,则执行循环体,p=0+1=1,s=1,t=1k=2,满足条件k<4,则执行循环体,p=1+1=2,s=1,t=2k=3,满足条件k<4,则执行循环体,p=1+2=3,s=2,t=3k=4,不满足条件k<4,则退出执行循环体,此时p=3考点:程序框图8、C【解析】

在中,利用正弦定理求出即可.【详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【点睛】本题考查了正弦定理的应用及相关的运算问题,属于基础题.9、A【解析】

列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.10、C【解析】

利用反三角函数的定义以及正切函数的周期为,即可得到原方程的解.【详解】由,根据正切函数图像以及周期可知:,故选:C【点睛】本题考查了反三角函数的定义以及正切函数的性质,需熟记正切函数的图像与性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,得到,由三角形的内角和,求出,再由正弦定理求出的值.【详解】因为,,所以,所以,在中,由正弦定理得,所以.【点睛】本题考查正弦定理解三角形,属于简单题.12、(4,5)4.【解析】

根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.13、【解析】

取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.14、.【解析】

先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.15、;【解析】

先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.16、【解析】

根据向量平行的坐标表示可求得;代入两角和差正切公式即可求得结果.【详解】本题正确结果:【点睛】本题考查两角和差正切公式的应用,涉及到向量平行的坐标表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.18、(1)(2)【解析】

(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.19、(1)(2)(3)【解析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.20、(1),;(2).【解析】试题分析:本题主要考查由求、等比数列的通项公式、等比数列的前n项和公式、错位相减法等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由求,利用,分两部分求和,经判断得数列为等比数列;第二问,结合第一问的结论,利用错位相减法,结合等比数列的前n项和公式,计算化简.试题解析:(Ⅰ)时所以时,是首项为、公比为的等比数列,,.(Ⅱ)错位相减得:.考点:求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论