云南省保山一中高三二诊模拟考试新高考数学试卷及答案解析_第1页
云南省保山一中高三二诊模拟考试新高考数学试卷及答案解析_第2页
云南省保山一中高三二诊模拟考试新高考数学试卷及答案解析_第3页
云南省保山一中高三二诊模拟考试新高考数学试卷及答案解析_第4页
云南省保山一中高三二诊模拟考试新高考数学试卷及答案解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省保山一中高三二诊模拟考试新高考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.362.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种3.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.4.函数的定义域为,集合,则()A. B. C. D.5.已知随机变量服从正态分布,且,则()A. B. C. D.6.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.7.已知函数,则不等式的解集为()A. B. C. D.8.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P29.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)10.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心11.已知,其中是虚数单位,则对应的点的坐标为()A. B. C. D.12.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.9二、填空题:本题共4小题,每小题5分,共20分。13.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).14.已知数列的前项和且,设,则的值等于_______________.15.已知集合,若,则__________.16.展开式的第5项的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.18.(12分)设函数.(1)当时,求不等式的解集;(2)当时,求实数的取值范围.19.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.20.(12分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.21.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.22.(10分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.2、B【解析】

首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.3、D【解析】

根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,

当,若为增函数,则①,

当,若为增函数,必有在上恒成立,

变形可得:,

又由,可得在上单调递减,则,

若在上恒成立,则有②,

若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③

联立①②③可得:.

故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.4、A【解析】

根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.5、C【解析】

根据在关于对称的区间上概率相等的性质求解.【详解】,,,.故选:C.【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.6、B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B7、D【解析】

先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.8、C【解析】

将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1=;方案二坐车可能:312、321,所以,P1=;所以P1+P2=故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.9、C【解析】

首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.10、A【解析】

根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.11、C【解析】

利用复数相等的条件求得,,则答案可求.【详解】由,得,.对应的点的坐标为,,.故选:.【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.12、D【解析】

根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【详解】∵是定义是上的奇函数,满足,,可得,

函数的周期为3,

∵当时,,

令,则,解得或1,

又∵函数是定义域为的奇函数,

∴在区间上,有.

由,取,得,得,

∴.

又∵函数是周期为3的周期函数,

∴方程=0在区间上的解有共9个,

故选D.【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、必要不充分【解析】

先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.14、7【解析】

根据题意,当时,,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,,又,解得,当时,由,所以,,即,故数列是以为首项,为公比的等比数列,故,又,,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.15、1【解析】

分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.【详解】依题意,分别令,,,由集合的互异性,解得,则.故答案为:【点睛】本题考查集合元素的特性:确定性、互异性、无序性.确定集合中元素,要注意检验集合中的元素是否满足互异性.16、70【解析】

根据二项式定理的通项公式,可得结果.【详解】由题可知:第5项为故第5项的的系数为故答案为:70.【点睛】本题考查的是二项式定理,属基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(t为参数);(Ⅱ)或或.【解析】

试题分析:本题主要考查极坐标方程、参数方程与直角方程的相互转化、直线与抛物线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用,化简表达式,得到曲线的极坐标方程,由已知点和倾斜角得到直线的参数方程;第二问,直线方程与曲线方程联立,消参,解出的值.试题解析:(1)即,.(2),符合题意考点:本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与抛物线的位置关系.18、(1)(2)当时,的取值范围为;当时,的取值范围为.【解析】

(1)当时,分类讨论把不等式化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解.【详解】(1)当时,,不等式可化为或或,解得不等式的解集为.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,所以当时,的取值范围为;当时,的取值范围为.【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.19、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(1)取中点,连,,由等边三角形三边合一可知,,即证.(2)以,,为正方向建立空间直角坐标系,由向量法可求得平面与平面所成的锐二面角的余弦值.试题解析:(Ⅰ)证明:连,,则和皆为正三角形.取中点,连,,则,,则平面,则(Ⅱ)由(Ⅰ)知,,又,所以.如图所示,分别以,,为正方向建立空间直角坐标系,则,,,设平面的法向量为,因为,,所以取面的法向量取,则,平面与平面所成的锐二面角的余弦值.20、(1)(2)【解析】

(1)当时,,由可得,(所以,解得,所以不等式的解集为.(2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,,函数的图象与轴没有交点,不符合题意;当时,,函数的图象与轴恰好围成一个直角三角形,符合题意.综上,可得.21、(1)(2)证明见解析【解析】

(1)由点可得,由,根据即可求解;(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.【详解】解:(1)由题意可知,,又,得,所以椭圆的方程为(2)证明:设直线的方程为,联立,可得,设,则有,因为,所以,又因为点B与点Q关于原点对称,所以,即,则有,由点在椭圆上,得,所以,所以,即,所以存在实数,使成立【点睛】本题考查椭圆的标准方程,考查直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论