版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.22.等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是()A.1 B.2 C.3 D.43.复数为纯虚数,则()A.i B.﹣2i C.2i D.﹣i4.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.5.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路6.若复数是纯虚数,则()A.3 B.5 C. D.7.已知命题,,则是()A., B.,.C., D.,.8.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,()A. B. C. D.9.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格10.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户11.已知点,若点在曲线上运动,则面积的最小值为()A.6 B.3 C. D.12.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线(,)过圆:的圆心,则的最小值是______.14.设函数,若在上的最大值为,则________.15.已知函数恰好有3个不同的零点,则实数的取值范围为____16.已知随机变量服从正态分布,若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.18.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02419.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.20.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖不获奖总计附表及公式:其中,.21.(12分)设为抛物线的焦点,,为抛物线上的两个动点,为坐标原点.(Ⅰ)若点在线段上,求的最小值;(Ⅱ)当时,求点纵坐标的取值范围.22.(10分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.2、C【解析】
解:对于(1),当CD⊥平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD⊥平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,∴四面体E﹣BCD的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AE⊥BD,又AE⊥BE,则AE⊥平面BDE,可得AE⊥DE,进一步可得AE=DE,此时E﹣ABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则∠DOE为二面角D﹣AB﹣E的平面角,为θ,直角边AE绕斜边AB旋转,则在旋转的过程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dP﹣BC,因为<1,所以点P的轨迹为椭圆.(4)正确.故选:C.点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.3、B【解析】
复数为纯虚数,则实部为0,虚部不为0,求出,即得.【详解】∵为纯虚数,∴,解得..故选:.【点睛】本题考查复数的分类,属于基础题.4、A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.5、D【解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.6、C【解析】
先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.7、B【解析】
根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.8、C【解析】
判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得.【详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,∴,设,则,,∴,.故选:C.【点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角.9、D【解析】
先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,,,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.10、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.11、B【解析】
求得直线的方程,画出曲线表示的下半圆,结合图象可得位于,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【详解】解:曲线表示以原点为圆心,1为半径的下半圆(包括两个端点),如图,直线的方程为,可得,由圆与直线的位置关系知在时,到直线距离最短,即为,则的面积的最小值为.故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.12、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】
求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值.【详解】圆:的标准方程为,圆心为,由题意,即,∴,当且仅当,即时等号成立,故答案为:.【点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”.14、【解析】
求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【详解】解:定义域为,在上单调递增,故在上的最大值为故答案为:【点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.15、【解析】
恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.16、0.4【解析】
因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)当时,<0,单调递减;当时,>0,单调递增;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对求导,再对a进行讨论,判断函数的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论,第(Ⅲ)问,构造函数=(),利用导数判断函数的单调性,从而求解a的值.试题解析:(Ⅰ)<0,在内单调递减.由=0有.当时,<0,单调递减;当时,>0,单调递增.(Ⅱ)令=,则=.当时,>0,所以,从而=>0.(Ⅲ)由(Ⅱ),当时,>0.当,时,=.故当>在区间内恒成立时,必有.当时,>1.由(Ⅰ)有,而,所以此时>在区间内不恒成立.当时,令=().当时,=.因此,在区间单调递增.又因为=0,所以当时,=>0,即>恒成立.综上,.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明不等式,一般证明的最小值大于0,为此要研究函数的单调性.本题中注意由于函数的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.18、(1);(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3【解析】
(1)由频率和为1,列出方程求的值;(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(3)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.【详解】解:(1)由频率分布直方图各小长方形面积总和为1,可知,解得;(2)由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为(人),填表如下:晋级成功晋级失败合计男163450女94150合计2575100假设“晋级成功”与性别无关,根据上表数据代入公式可得,所以有超过的把握认为“晋级成功”与性别有关;(3)由频率分布直方图知晋级失败的频率为,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以可视为服从二项分布,即,,故,,,,.所以的分布列为:01234数学期望为.或().【点睛】本题考查了频率分布直方图和离散型随机变量的分布列、数学期望的应用问题,属于中档题.若离散型随机变量,则.19、(I);(II).【解析】
试题分析:(I)由已知可得;(II)依题意得:的周长为.试题解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依题意得:∴,∴,∴,∴,∴的周长为.考点:1、解三角形;2、三角恒等变换.20、(Ⅰ),;(Ⅱ)详见解析.【解析】
(Ⅰ)根据概率的性质知所有矩形的面积之和等于列式可解得;(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得.【详解】解:(Ⅰ),.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国交通安全课件
- 高德导航推广话术
- 拼团购买引导话术
- 移民案例面试应对策略
- 英国人工智能战略布局
- 光纤技术教学课件
- 英语翻译应用就业前景
- 消防安全关爱行动倡议书
- 光伏行业安全员培训课件
- 期末考试财产分配问题及答案
- 2025年变电检修笔试题及答案
- 含酚污水处理操作规程
- 江苏省苏州市吴中学、吴江、相城区2024-2025学年化学九上期末质量检测模拟试题含解析
- 建筑公司发展策划方案
- 肿瘤常见症状管理
- 机械进出场管理制度
- 教育培训机构董事会决策机制范文
- 胰岛素皮下注射团体标准解读
- 《电气安装与维修》课件 项目四 YL-G156A 型能力测试单元-智能排故板
- 海洋能技术的经济性分析
- 云南省昭通市2024-2025学年七年级上学期期末历史试题(含答案)
评论
0/150
提交评论