版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省2025届高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是等差数列的前项和,若,则()A. B. C. D.2.在中,角、、所对的边分别为、、,若,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形3.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且4.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.5.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.6.在某次测量中得到样本数据如下:,若样本数据恰好是样本每个数都增加得到,则、两样本的下列数字特征对应相同的是()A.众数 B.中位数 C.方差 D.平均数7.若平面α∥平面β,直线平面α,直线n⊂平面β,则直线与直线n的位置关系是()A.平行 B.异面C.相交 D.平行或异面8.函数的最大值是()A. B. C. D.9.已知平面向量,,且,则实数的值为()A. B. C. D.10.在的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A,B两点,那么这两个切点在球面上的最短距离为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若正实数满足,则的最大值为__________.12.函数的图象在点处的切线方程是,则__________.13.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______14.已知函数,的最大值为_____.15.已知函数是定义在上的奇函数,当时,,则________.16.观察下列式子:你可归纳出的不等式是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.18.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.19.如图,正方体棱长为,连接,,,,,,得到一个三棱锥,求:(1)三棱锥的表面积与正方体表面积的比值;(2)三棱锥的体积.20.如图,三棱柱的侧面是边长为2的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.21.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值.【详解】根据等差数列的性质,若数列为等差数列,则也成等差数列;又,则数列是以为首项,以为公差的等差数列,则,故选D.【点睛】本题考查等差数列片断和的性质,再利用片断和的性质时,要注意下标之间的倍数关系,结合性质进行求解,考查运算求解能力,属于中等题.2、B【解析】
利用正弦定理得到答案.【详解】故答案为B【点睛】本题考查了正弦定理,意在考查学生的计算能力.3、D【解析】可取,;,,,,,故选D.4、B【解析】
设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.5、A【解析】
设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【点睛】本题考查球的体积,关键是确定球心位置求出球的半径.6、C【解析】
分别计算出、两个样本数据的众数、中位数、方差和平均数,再进行判断。【详解】样本的数据为:、、、、,没有众数,中位数为,平均数为,方差为,样本的数据为:、、、、,没有众数,中位数为,平均数为,方差为,因此,两个样本数据的方差没变,故选:D。【点睛】本题考查样本的数据特征,考查对样本数据的众数、中位数、平均数以及方差概念的理解,熟练利用相关公式计算这些数据,是解本题的关键,属于中等题。7、D【解析】
由面面平行的定义,可得两直线无公共点,可得所求结论.【详解】平面α∥平面β,可得两平面α,β无公共点,即有直线与直线也无公共点,可得它们异面或平行,故选:D.【点睛】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.8、B【解析】
令,再计算二次函数定区间上的最大值。【详解】令则【点睛】本题考查利用换元法将计算三角函数的最值转化为计算二次函数定区间上的最值。属于基础题。9、B【解析】
先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.10、A【解析】
根据题意,作出截面图,计算弧长即可.【详解】根据题意,作出该球过球心且经过A、B的截面图如下所示:由题可知:则,故满足题意的最短距离为弧长BA,在该弧所在的扇形中,弧长.故选:A.【点睛】本题考查弧长的计算公式,二面角的定义,属综合基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.12、【解析】由导数的几何意义可知,又,所以.13、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样14、【解析】
化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【点睛】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。15、【解析】
根据奇偶性,先计算,再计算【详解】因为是定义在上的奇函数,所以.因为当时,所以.故答案为【点睛】本题考查了奇函数的性质,属于常考题型.16、【解析】
观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【点睛】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【点睛】本题考查了向量的知识,熟悉向量数量积的知识点和几何意义是解题的关键所在,属于中档题.18、(1),(2)【解析】
(1)先根据成等比数列,可求出公差,即得的通项公式;根据可得的通项公式;(2)由(1)可得的通项公式,用错位相减法计算它的前n项和,即得。【详解】(1)由题得,,设数列的公差为,则有,解得,那么等差数列的通项公式为;数列的前项和为,且满足,当时,,可得,当时,可得,整理得,数列是等比数列,通项公式为.(2)由题得,,前n项和,,两式相减可得,整理化简得.【点睛】本题考查等比数列的性质,以及用错位相减法求数列的前n项和,对计算能力有一定要求。19、(1);(2)【解析】试题分析:(1)求出三棱锥的棱长为,即可求出三棱锥的表面积与正方体表面积的比值;(2)利用割补法,即可求出三棱锥的体积.试题解析:(1)正方体的棱长为,则三棱锥的棱长为,表面积为,正方体表面积为,∴三棱锥的表面积与正方体表面积的比值为(2)三棱锥的体积为20、(1)见解析(2)【解析】
(1)连结,交于点,连结,推导出,又,从而面,进而,推导出,由此能得到结论;(2)由题意,可证得是二面角的平面角,进而得,进而计算得,进而利用棱锥的体积公式计算即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以面而平面,所以,因为,所以,而,所以,故.(2)因为,为的中点,则,由(1)可知,因为,所以面,作,连结,由(1)知,所以且所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本题考查两个角相等的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.21、(1)见解析;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特许连锁加盟合同范本
- 海滩出租转让合同范本
- 物流定额承包合同范本
- 特大纸箱供货合同范本
- 理发店门店合同协议书
- 泵车员工劳务合同范本
- 清洁阿姨返聘合同范本
- 烤肉菜品出售合同范本
- 非药用植物药材鉴定-洞察及研究
- 大数据驱动的质量控制-洞察及研究
- 形势与政策台湾问题课件
- 安责险和安全知识培训课件
- 楷书入门教学课件
- 关于A公司资本结构优化研究
- 2025至2030中国核废料管理行业项目调研及市场前景预测评估报告
- DB52∕T 1842-2024 更年期健康教育规范
- 妊娠合并肺动脉高压的护理
- 2025年青少年科技创新比赛考核试卷及答案
- 2025年人教版小学五年级语文(上册)期中试卷及答案
- 杜邦安全理念培训课件
- 2025高考志愿第五轮学科评估(部分)+第四轮学科评估结果Excel表格
评论
0/150
提交评论