




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省定远县二中数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆与圆的位置关系为()A.内切 B.相交 C.外切 D.相离2.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)3.空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:指数值0~5051~100101~150151~200201~300空气质量优良轻度污染中度污染重度污染严重污染如图是某市10月1日-20日指数变化趋势:下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好4.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.35.已知的三边满足,则的内角C为()A. B. C. D.6.如图,、两点为山脚下两处水平地面上的观测点,在、两处观察点观察山顶点的仰角分别为、若,,且观察点、之间的距离为米,则山的高度为()A.米 B.米 C.米 D.米7.等差数列中,则()A.8 B.6 C.4 D.38.执行如图所示的程序框图,则输出的的值为()A.3 B.4 C.5 D.69.设变量,满足约束条件则目标函数的最小值为()A.4 B.-5 C.-6 D.-810.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)二、填空题:本大题共6小题,每小题5分,共30分。11.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________12.方程在区间上的解为___________.13.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.14.在数列中,,当时,.则数列的前项和是_____.15.设为内一点,且满足关系式,则________.16.已知数列的前n项和,则数列的通项公式是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.根据频率分布直方图,估计这50名同学的数学平均成绩;用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.18.2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记2016年为第1年,为第1年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.19.如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.20.(1)设,直接用任意角的三角比定义证明:.(2)给出两个公式:①;②.请仅以上述两个公式为已知条件证明:.21.已知函数.(1)若,求函数的值;(2)求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:两圆的圆心距为,半径分别为,,所以两圆相交.故选C.考点:圆与圆的位置关系.2、C【解析】
(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【点睛】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.3、C【解析】
根据所给图象,结合中位数的定义、指数与污染程度的关系以及古典概型概率公式,对四个选项逐一判断即可.【详解】对,因为第10天与第11天指数值都略高100,所以中位数略高于100,正确;对,中度污染及以上的有第11,13,14,15,17天,共5天占,正确;对,由图知,前半个月中,前4天的空气质量越来越好,后11天该市的空气质量越来越差,错误;对,由图知,10月上旬大部分指数在100以下,10月中旬大部分指数在100以上,所以正确,故选C.【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.4、C【解析】
由两个三角形的面积比,得到边ACCB=32,利用正弦定理【详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【点睛】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.5、C【解析】原式可化为,又,则C=,故选C.6、A【解析】
过点作延长线于,根据三角函数关系解得高.【详解】过点作延长线于,设山的高度为故答案选A【点睛】本题考查了三角函数的应用,属于简单题.7、D【解析】
设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
根据框图模拟程序运算即可.【详解】第一次执行程序,,,继续循环,第二次执行程序,,,,继续循环,第三次执行程序,,,,继续循环,第四次执行程序,,,,继续循环,第五次执行程序,,,,跳出循环,输出,结束.故选C.【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.9、D【解析】绘制不等式组所表示的平面区域,结合目标函数的几何意义可知,目标函数在点处取得最小值.本题选择D选项.10、D【解析】
直接利用向量的坐标运算法则化简求解即可.【详解】解:向量a=(3,2),b则向量2b-故选D.【点睛】本题考查向量的坐标运算,考查计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、2019【解析】
根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.12、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.13、【解析】
设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.14、【解析】
先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【点睛】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.15、【解析】
由题意将已知中的向量都用为起点来表示,从而得到32,分别取AB、AC的中点为D、E,可得2,利用平面知识可得S△AOB与S△AOC及S△BOC与S△ABC的关系,可得所求.【详解】∵,∴32,∴2,分别取AB、AC的中点为D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案为:.【点睛】本题考查向量的加减法运算,体现了数形结合思想,解答本题的关键是利用向量关系画出助解图形.16、【解析】
时,,利用时,可得,最后验证是否满足上式,不满足时候,要写成分段函数的形式.【详解】当时,,当时,=,又时,不适合,所以.【点睛】本题考查了由求,注意使用求时的条件是,所以求出后还要验证适不适合,如果适合,要将两种情况合成一种情况作答,如果不适合,要用分段函数的形式作答.属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
⑴用频率分布直方图中的每一组数据的平均数乘以对应的概率并求和即可得出结果;⑵首先可通过分层抽样确定6人中在分数段以及分数段中的人数,然后分别写出所有的基本事件以及满足题意中“两名同学数学成绩均在中”的基本事件,最后两者相除,即可得出结果.【详解】⑴由频率分布表,估计这50名同学的数学平均成绩为:;⑵由频率分布直方图可知分数低于115分的同学有人,则用分层抽样抽取6人中,分数在有1人,用a表示,分数在中的有5人,用、、、、表示,则基本事件有、、、、、、、、、、、、、、,共15个,满足条件的基本事件为、、、、、、、、、,共10个,所以这两名同学分数均在中的概率为.【点睛】本题考查了频率分布直方图以及古典概型的相关性质,解决本题的关键是对频率分布直方图的理解以及对古典概型概率的计算公式的使用,考查推理能力,是简单题.18、(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出.试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴当n≤3时,f(n+1)﹣f(n)<1,故当n≤2时,f(n)递减;当n≥2时,f(n+1)﹣f(n)>1,故当n≥2时,f(n)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.从而当x∈[1,2)时,f'(x)<1,f(x)递减;当x∈(2,+∞)时,f'(x)>1,f(x)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利.19、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析【解析】
(Ⅰ)转化为证明;(Ⅱ)转化为证明,;(Ⅲ)根据线面平行的性质定理.【详解】(Ⅰ)因为四边形为正方形,所以,由于平面,平面,所以平面.(Ⅱ)因为四边形为正方形,所以.平面平面,平面平面,所以平面.所以.取中点,连接.由,,,可得四边形为正方形.所以.所以.所以.因为,所以平面.(Ⅲ)存在,当为的中点时,平面,此时.证明如下:连接交于点,由于四边形为正方形,所以是的中点,同时也是的中点.因为,又四边形为正方形,所以,连接,所以四边形为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国油雾收集器行业应用状况与投资盈利研究报告
- 2025至2030中国新一代信息技术产业园行业经营效益与发展趋势研究报告
- 2025至2030中国支付体系行业现状调查与前景策略研究报告
- 2025至2030中国护眼灯市场应用前景及未来发展方向研究报告
- 2025至2030中国律师事务所行业深度调研及前景规划研究报告
- 2025至2030中国安全防护罩行业应用趋势与经营效益研究报告
- 2025至2030中国复合果蔬汁饮料市场供需前景与未来消费趋势研究报告
- 2025至2030中国土壤修复行业战略规划及运营模式研究报告
- 学习信访听证法心得体会模版
- 法学概论考试分析与对策及试题及答案
- T-CWEC 45-2024 水利水电工程帷幕灌浆水下施工及质量验收规范
- 湖北省松滋市老城镇八一小学2024-2025学年小学六年级第二学期小升初数学试卷含解析
- 邮政邮件内部处理业务外包服务投标方案(技术方案)
- 2025-2030年中国核桃种植深加工行业运行状况及前景趋势分析报告
- 历史课件:中国古代史【模板课件】
- 《陶瓷基复合材料》课件
- 申请软著流程
- 民航旅客乘机流程
- 贵州文物调查研究-从文物看中华民族共同体历史的区域实践知到智慧树章节测试课后答案2024年秋贵州民族大学
- 光伏安全施工方案范本
- 食品公司配送路线优化流程
评论
0/150
提交评论