2022年山西省吕梁市联盛中学数学高三第一学期期末达标检测模拟试题含解析_第1页
2022年山西省吕梁市联盛中学数学高三第一学期期末达标检测模拟试题含解析_第2页
2022年山西省吕梁市联盛中学数学高三第一学期期末达标检测模拟试题含解析_第3页
2022年山西省吕梁市联盛中学数学高三第一学期期末达标检测模拟试题含解析_第4页
2022年山西省吕梁市联盛中学数学高三第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B.C. D.2.若均为任意实数,且,则的最小值为()A. B. C. D.3.已知,函数在区间内没有最值,给出下列四个结论:①在上单调递增;②③在上没有零点;④在上只有一个零点.其中所有正确结论的编号是()A.②④ B.①③ C.②③ D.①②④4.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A. B. C. D.5.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.6.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.7.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A. B. C. D.28.若的展开式中的系数之和为,则实数的值为()A. B. C. D.19.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁10.若sin(α+3π2A.-12 B.-1311.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则__________.14.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________.15.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.16.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.18.(12分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M

),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1

(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.20.(12分)已知是递增的等差数列,,是方程的根.(1)求的通项公式;(2)求数列的前项和.21.(12分)已知数列满足(),数列的前项和,(),且,.(1)求数列的通项公式:(2)求数列的通项公式.(3)设,记是数列的前项和,求正整数,使得对于任意的均有.22.(10分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.2、D【解析】

该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.3、A【解析】

先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【详解】因为函数在区间内没有最值.所以,或解得或.又,所以.令.可得.且在上单调递减.当时,,且,所以在上只有一个零点.所以正确结论的编号②④故选:A.【点睛】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.4、B【解析】

①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断.【详解】若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,故④正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.5、D【解析】

根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.6、D【解析】

利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.7、A【解析】

设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.8、B【解析】

由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.9、C【解析】

分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.10、B【解析】

由三角函数的诱导公式和倍角公式化简即可.【详解】因为sinα+3π2=3故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.11、B【解析】

首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.12、B【解析】

先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

由已知利用余弦定理可得,即可解得的值.【详解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案为:1.【点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题.14、【解析】

点在的平分线可知与向量共线,利用线性运算求解即可.【详解】因为点在的平线上,所以存在使,而,可解得,所以,故答案为:【点睛】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.15、1【解析】

由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16、【解析】

设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解【详解】设圆柱的轴截面的边长为x,则由,得,∴.故答案为:【点睛】本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可设直线方程为,,联立得,易知△>0,则===因为,所以=1,解得联立,得,△=8>0设,则【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题.意在考查学生的数学运算能力.18、(1)见解析,,x[0,1];(2)P(,)时,视角∠EPF最大.【解析】

(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标.【详解】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p=1,故方程为,x[0,1];(2)设P(,),t[0,],作PQ⊥l3于Q,记∠EPQ=,∠FPQ=,,令,,则:,当且仅当即,即,即时取等号;故P(,)时视角∠EPF最大,答:P(,)时,视角∠EPF最大.【点睛】本题主要考查圆锥曲线的实际应用,理解题意,构建合适的模型是求解的关键,涉及最值问题一般利用基本不等式或者导数来进行求解,侧重考查数学运算的核心素养.19、(1)B(2)【解析】

(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因为a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,当且仅当a=c时取等号,即ac的最大值4,所以△ABC面积S即面积的最大值.【点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.20、(1);(2).【解析】

(1)方程的两根为,由题意得,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前项和公式即可求出.【详解】方程x2-5x+6=0的两根为2,3.由题意得a2=2,a4=3.设数列{an}的公差为d,则a4-a2=2d,故d=,从而得a1=.所以{an}的通项公式为an=n+1.(2)设的前n项和为Sn,由(1)知=,则Sn=++…++,Sn=++…++,两式相减得Sn=+-=+-,所以Sn=2-.考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论