2025届新疆维吾尔自治区兵团地区十校联考高一下数学期末质量检测模拟试题含解析_第1页
2025届新疆维吾尔自治区兵团地区十校联考高一下数学期末质量检测模拟试题含解析_第2页
2025届新疆维吾尔自治区兵团地区十校联考高一下数学期末质量检测模拟试题含解析_第3页
2025届新疆维吾尔自治区兵团地区十校联考高一下数学期末质量检测模拟试题含解析_第4页
2025届新疆维吾尔自治区兵团地区十校联考高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆维吾尔自治区兵团地区十校联考高一下数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.已知数列的前项和满足.若对任意正整数都有恒成立,则实数的取值范围为()A. B. C. D.3.在中,设角,,的对边分别是,,,若,,,则其面积等于()A. B. C. D.4.若都是正数,则的最小值为().A.5 B.7 C.9 D.135.已知角α的终边上有一点P(sin,cos),则tanα=()A. B. C. D.6.已知向量,,则()A.-1 B.-2 C.1 D.07.已知等差数列的前项和为,若,则()A.18 B.13 C.9 D.78.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.1829.已知角的终边上一点,且,则()A. B. C. D.10.已知圆心为C(6,5),且过点B(3,6)的圆的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,分别是角的对边,,且的周长为5,面积,则=______12.若向量与平行.则__.13.已知方程的两根分别为、、且,且__________.14.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.15.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设的三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜公式”为.若,,则用“三斜公式”求得的面积为______.16.已知向量,若,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.18.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.19.已知不等式ax2-3x+6>4的解集为{x|x<1(1)求a,b;(2)解关于x的不等式a20.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.21.某校高二年级共有800名学生参加2019年全国高中数学联赛江苏赛区初赛,为了解学生成绩,现随机抽取40名学生的成绩(单位:分),并列成如下表所示的频数分布表:分组频数⑴试估计该年级成绩不低于90分的学生人数;⑵成绩在的5名学生中有3名男生,2名女生,现从中选出2名学生参加访谈,求恰好选中一名男生一名女生的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。2、C【解析】

先利用求出数列的通项公式,于是可求出,再利用参变量分离法得到,利用数列的单调性求出数列的最小项的值,可得出实数的取值范围.【详解】当时,,即,得;当时,由,得,两式相减得,得,,所以,数列为等比数列,且首项为,公比为,.,由,得,所以,数列单调递增,其最小项为,所以,,因此,实数的取值范围是,故选C.【点睛】本题考查利用数列前项和求数列的通项,其关系式为,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.3、C【解析】

直接利用三角形的面积的公式求出结果.【详解】解:中,角,,的对边边长分别为,,,若,,,则,故选:.【点睛】本题考查的知识要点:三角形面积公式的应用及相关的运算问题,属于基础题.4、C【解析】

把式子展开,合并同类项,运用基本不等式,可以求出的最小值.【详解】因为都是正数,所以,(当且仅当时取等号),故本题选C.【点睛】本题考查了基本不等式的应用,考查了数学运算能力.5、A【解析】

由题意利用任意角的三角函数的定义,求得tanα的值.【详解】解:∵角α的终边上有一点P(sin,cos),∴x=sin,y=cos,∴则tanα,故选A.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.6、C【解析】

根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.7、B【解析】

利用等差数列通项公式、前项和列方程组,求出,.由此能求出.【详解】解:等差数列的前项和为,,,,解得,..故选:.【点睛】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.8、B【解析】

由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.9、B【解析】

由角的终边上一点得,根据条件解出即可【详解】由角的终边上一点得所以解得故选:B【点睛】本题考查的是三角函数的定义,较简单.10、A【解析】

在知道圆心的情况下可设圆的标准方程为,然后根据圆过点B(3,6),代入方程可求出r的值,得到圆的方程.【详解】因为,又因为圆心为C(6,5),所以所求圆的方程为,因为此圆过点B(3,6),所以,所以,因而所求圆的方程为.考点:圆的标准方程.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【点睛】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.12、【解析】

由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【详解】由题意,向量与平行,所以,解得.故答案为.【点睛】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.13、【解析】

由韦达定理和两角和的正切公式可得,进一步缩小角的范围可得,进而可求.【详解】方程两根、,,,,又,,,,,,,结合,,故答案为.【点睛】本题考查两角和与差的正切函数,涉及韦达定理,属中档题.14、【解析】

利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.15、【解析】

先由,根据余弦定理,求出,再由,结合余弦定理,求出,再由题意即可得出结果.【详解】因为,所以,因此;又,由余弦定理可得,所以,因此.故答案为【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.16、【解析】

由题意利用两个向量垂直的性质,两个向量的数量积公式,求得的值.【详解】因为向量,若,∴,则.故答案为:1.【点睛】本题主要考查两个向量垂直的坐标运算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(1)本题是一个古典概型,可知基本事件共12个,方程当时有实根的充要条件为,满足条件的事件中包含9个基本事件,由古典概型公式得到事件发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为,.构成事件的区域为,,.根据几何概型公式得到结果.【详解】解:设事件为“方程有实数根”.当时,方程有实数根的充要条件为.(Ⅰ)基本事件共12个:.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件,事件发生的概率为.(Ⅱ)实验的全部结果所构成的区域为.构成事件的区域为,所求的概率为【点睛】本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,属于基础题.18、(1)最大值,最小值为,最小正周期;(2)【解析】

(1)根据即可求出最值,利用即可求出最小正周期;(2)根据复合函数的单调性,令即可得解.【详解】(1),函数的最大值为,最小值为;函数的最小正周期为.(2)令,得:,故函数的增区间为.【点睛】本题考查了三角函数的性质以及单调区间的求解,属于基础题.19、(1)a=1,b=2;(2)①当c>2时,解集为{x|2<x<c};②当c<2时,解集为{x|c<x<2};③当c=2时,解集为∅.【解析】

(1)根据不等式ax2﹣3x+6>4的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,讨论c的取值,求出对应不等式的解集.【详解】(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根,且b>1;由根与系数的关系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.20、(1)(2)【解析】

(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.【详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【点睛】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.21、(1)300人;(2)【解析】

(1)由频数分布表可得40人中成绩不低于90分的学生人数为15人,由此可计算出该年级成绩不低于90分的学生人数;(2)根据题意写出所有的基本事件,确定基本事件的个数,即可计算出恰好选中一名男生一名女生的概率.【详解】⑴40名学生中成绩不低于90分的学生人数为15人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论