




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区和田地区2025届数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则下列不等式中正确的是()A. B. C. D.2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”3.如图,函数的图像是()A. B.C. D.4.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角5.在中,角所对的边分别为,若,,,则等于()A.4 B. C. D.6.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.7.设,若关于的不等式在区间上有解,则()A. B. C. D.8.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.9.直线被圆截得的弦长为()A.4 B. C. D.10.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解二、填空题:本大题共6小题,每小题5分,共30分。11.若则____________12.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.13.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101314.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________15.已知空间中的三个顶点的坐标分别为,则BC边上的中线的长度为________.16.已知,且,.则的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,且.(1)求;(2)若,求的周长.18.某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表分组频数频率10205020合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).19.如图,在四棱锥中,底面为菱形,、、分别是棱、、的中点,且平面.(1)求证:平面;(2)求证:平面.20.设角,,其中:(1)若,求角的值;(2)求的值.21.某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:测试指标甲乙根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:(1)乙生产一件产品,盈利不小于元的概率;(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。2、C【解析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.3、B【解析】
根据的取值进行分类讨论,去掉中绝对值符号,转化为分段函数,利用正弦函数的图象即可得解.【详解】当时,;当时,.因此,函数的图象是B选项中的图象.故选:B.【点睛】本题考查正切函数与正弦函数的图象,去掉绝对值是关键,考查分类讨论思想的应用,属于中等题.4、C【解析】
根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【点睛】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.5、B【解析】
根据正弦定理,代入数据即可。【详解】由正弦定理,得:,即,即:解得:选B。【点睛】此题考查正弦定理:,代入数据即可,属于基础题目。6、B【解析】
分别求出四个选项中函数的周期,排除选项后,再通过函数的单调减区间找出正确选项即可.【详解】由题意观察选项,C的周期不是,所以C不正确;对于A,,函数的周期为,但在区间上为增函数,故A不正确;对于B,,函数的周期为,且在区间上为减函数,故B正确;对于D,,函数的周期为,但在区间上为增函数,故D不正确;故选:B【点睛】本题主要考查三角函数的性质,需熟记正弦、余弦、正切、余切的性质,属于基础题.7、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.8、A【解析】
连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【点睛】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.9、B【解析】
先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.10、B【解析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,所以=.故填.12、1或;【解析】
要使最大,则最小.【详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【点睛】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.13、21.2【解析】
计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【点睛】本题主要考查回归方程的相关计算,难度很小.14、2【解析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.15、【解析】
先求出BC的中点,由此能求出BC边上的中线的长度.【详解】解:因为空间中的三个顶点的坐标分别为,所以BC的中点为,所以BC边上的中线的长度为:,故答案为:.【点睛】本题考查三角形中中线长的求法,考查中点坐标公式、两点间距离的求法等基础知识,考查运算求解能力,是基础题.16、2【解析】
.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
分析:(1)利用正弦定理,求得,即可求出A,根据已知条件算出,再由大边对大角,即可求出C;(2)易得,根据两角和正弦公式求出,再由正弦定理求出和,即可得到答案.详解:解:(1)由正弦定理得,又,所以,从而,因为,所以.又因为,,所以.(2)由(1)得由正弦定理得,可得,.所以的周长为.点睛:本题主要考查正弦定理在解三角形中的应用.正弦定理是解三角形的有力工具,其常见用法有以下四种:(1)已知两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)已知两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.18、(1)见解析;(2)40.00(mm)【解析】解:(1)频率分布表如下:分组
频数
频率
[39.95,39.97)
10
0.10
5
[39.97,39.99)
20
0.20
10
[39.99,40.01)
50
0.50
25
[40.01,40.03]
20
0.20
10
合计
100
1
注:频率分布表可不要最后一列,这里列出,只是为画频率分布直方图方便.频率分布直方图如下:(2)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).19、(1)见解析;(2)见解析【解析】
(1)取中点,连接,,得,利用直线与平面平行的判定定理证明平面.(2)连结,由已知条件得,由平面,得,利用直线与平面垂直的判定定理证明平面.【详解】(1)取中点,连接,,∵、分别是棱、的中点,∴,且.∵在菱形中,是的中点,∴,且,∴且,∴为平行四边形.∴.∵平面,平面,∴平面.(2)连接,∵是菱形,∴,∵,分别是棱、的中点,∴,∴,∵平面,平面,∴,∵,、平面,∴平面.【点睛】本题考查直线与平面平行以及直线与平面垂直的判定定理的应用,考查学生分析解决问题的能力,属于中档题.20、(1);(2).【解析】
(1)由,可得出,进而得出,结合可求出角的值,可求出的值,再利用反余弦的定义即可求出角的值;(2)由题意可得出,,可计算出,根据反三角的定义得出,,利用两角和的正弦公式求出的值,即可得出角的值.【详解】(1),,,,则,可得,所以,可得.因此,;(2),则,所以,,由(1)知,所以,,,,,,由同角三角函数的基本关系可得,,由两角和的正弦公式可得,因此,.【点睛】本题考查反三角函数的定义,同时也考查了利用两角和的正弦公式的应用,在求角时,不要忽略了求角的取值范围,考查计算能力,属于中等题.21、(1);(2)元;(3)【解析】
(1)设事件表示“乙生产一件产品,盈利不小于25元”,即该产品的测试指标不小于80,由此能求出乙生产一件产品,盈利不小于25元的概率.(2)由表格知甲生产的一等品、二等品、三等品比例为即,所以甲一天生产30件产品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生产的一等品、二等品、三等品比例为,所以乙一天生产20件产品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙两人一天共为企业创收1195元.(3)设甲测试指标为,的7件产品用,,,,,,表示,乙测试指标为,的7件产品用,表示,利用列举法能求出两件产品的测试指标差的绝对值大于10的概率.【详解】(1)设事件表示“乙生产一件产品,盈利不小于元”,即该产品的测试指标不小于,则;(2)甲一天生产件产品,其中一等品有件;二等品有件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 秋日的校园美景描写(5篇)
- 精密制造行业品质保障承诺书4篇范文
- 考点解析人教版八年级物理上册第5章透镜及其应用-透镜综合训练试卷(含答案详解)
- 再生骨料砌块墙体抗裂砌筑工艺考核试卷
- 2025年教师网络教学资源开发合规考核试卷
- 2025年普惠性在线教育《弱势群体在线教育服务规范》应用认证考核试卷
- 解析卷人教版八年级物理上册第5章透镜及其应用专项测试试卷(详解版)
- 解析卷-人教版八年级物理上册第5章透镜及其应用专项训练试题(解析版)
- 基于苏教版教材从 “计数单位”看新课标的整体化与一致性
- 调动学生自主能动性
- 北京市海淀区2023-2024学年七年级上学期数学期中考试试卷(含答案)
- 医院感染管理科十五五发展规划
- 学堂在线 实验室安全教育 章节测试答案
- 《教育强国建设规划纲要(2024-2035年)》及三年行动计划全面解读
- 医院特殊群体服务优先制度方案
- 2025年知识产权普法知识竞赛题库附答案
- 纳税申报实务说课课件
- 敦煌地貌课件
- 2025-2026学年七年级英语上学期第一次月考 (福建专用) 2025-2026学年七年级英语上学期第一次月考 (福建专用)原卷
- 酒店出纳基础知识培训课件
- 医院医疗器械询价采购相关表格(套)
评论
0/150
提交评论