版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河县一中2025届高一数学第二学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在各项均为正数的数列中,对任意都有.若,则等于()A.256 B.510 C.512 D.10242.在等比数列中,成等差数列,则公比等于()A.1
或
2 B.−1
或
−2 C.1
或
−2 D.−1
或
23.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.4.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.55.若圆上至少有三个不同的点到直线的距离为,则直线的斜率的取值范围是()A. B.C. D.6.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.7.如图,测量河对岸的塔高时,选与塔底B在同一水平面内的两个测点C与D.现测得,,,并在点C测得塔顶A的仰角为,则塔高为()A. B. C.60m D.20m8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.9.已知,,则点在直线上的概率为()A. B. C. D.10.数列满足“对任意正整数,都有”的充要条件是()A.是等差数列 B.与都是等差数列C.是等差数列 D.与都是等差数列且公差相等二、填空题:本大题共6小题,每小题5分,共30分。11.若无穷等比数列的各项和等于,则的取值范围是_____.12.若点在幂函数的图像上,则函数的反函数=________.13.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.14.直线的倾斜角为__________.15.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.16.已知向量,,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)证明:数列为等差数列;(2)求数列的前项和.18.四棱锥中,底面是边长为2的菱形,,是等边三角形,为的中点,.(Ⅰ)求证:;(Ⅱ)若,能否在棱上找到一点,使平面平面?若存在,求的长.19.(1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?(2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm)分组频数频率268合计201①完成频率分布表;②画出其频率分布直方图.20.已知两个定点,动点满足.设动点的轨迹为曲线,直线.(1)求曲线的轨迹方程;(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;(3)若,是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.21.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
因为,所以,则因为数列的各项均为正数,所以所以,故选C2、C【解析】
设出基本量,利用等比数列的通项公式,再利用等差数列的中项关系,即可列出相应方程求解【详解】等比数列中,设首项为,公比为,成等差数列,,即,或答案选C【点睛】本题考查等差数列和等比数列求基本量的问题,属于基础题3、D【解析】
由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D4、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.5、C【解析】
作出图形,设圆心到直线的距离为,利用数形结合思想可知,并设直线的方程为,利用点到直线的距离公式可得出关于的不等式,解出即可.【详解】如下图所示:设直线的斜率为,则直线的方程可表示为,即,圆心为,半径为,由于圆上至少有三个不同的点到直线的距离为,所以,即,即,整理得,解得,因此,直线的斜率的取值范围是.故选:C.【点睛】本题考查直线与圆的综合问题,解题的关键就是确定圆心到直线距离所满足的不等式,并结合点到直线的距离公式来求解,考查数形结合思想的应用,属于中等题.6、C【解析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.7、D【解析】
由正弦定理确定的长,再求出.【详解】,由正弦定理得:故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出,属于基础题.8、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.9、B【解析】
先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【点睛】本题考查了古典概型概率的计算公式,考查了数学运算能力.10、D【解析】
将变形为和,根据等差数列的定义即可得出与都是等差数列且公差相等,反过来,利用等差数列的定义得到,变形即可得出,从而得到“”的充要条件是“与都是等差数列且公差相等”.【详解】由得:即数列与均为等差数列且公差相等,故“”是“与都是等差数列且公差相等”的充分条件反之,与都是等差数列且公差相等必有成立变形得:故“与都是等差数列且公差相等”是“”的必要条件综上,“”的充要条件是“与都是等差数列且公差相等”故选:D.【点睛】本题主要考查了等差数列的判断,考查了充分必要条件的判断,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.12、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.14、【解析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率15、(3)【解析】
根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.16、【解析】
根据向量平行交叉相乘相减等于0即可.【详解】因为两个向量平行,所以【点睛】本题主要考查了向量的平行,即,若则,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)将已知条件凑配成,由此证得数列为等差数列.(2)由(1)求得数列的通项公式,进而求得的表达式,利用分组求和法求得.【详解】(1)证明:∵∴又∵∴所以数列是首项为1,公差为2的等差数列;(2)由(1)知,,所以.所以【点睛】本小题主要考查根据递推关系式证明等差数列,考查分组求和法,属于中档题.18、(Ⅰ)见解析;(Ⅱ).【解析】
(Ⅰ)连接,根据三角形性质可得,由底面菱形的线段角度关系可证明,即证明平面,从而证明.(Ⅱ)易证平面平面,连接交于点,过作交于,即可证明平面,在三角形【详解】(Ⅰ)证明:连接,是等边三角形,为的中点,所以;又底面是菱形,,所以,,所以平面,平面,所以.(Ⅱ)由(Ⅰ)知,,所以平面,又平面即平面平面平面平面,又,所以平面连接交于点,过作交于,如下图所示:所以平面,又平面所以平面平面因为,所以,即在等边三角形中,可得在菱形中,由余弦定理可得在中,可得所以【点睛】本题考查了直线与平面垂直的判定方法,平面与平面垂直的判定及性质的应用,余弦定理在解三角形中的用法,属于中档题.19、(1)系统抽样;(2)①分布表见解析;②直方图见解析.【解析】
(1)因需要研究的个体很多,且差异不明显,适宜用系统抽样.(2)①直接计算频率即可.②根据①中计算出的数据,用每一组的频率/组距作为纵坐标,即可做出频率分布直方图.【详解】某厂生产的一批零件1000个,差异不明显,且因需要研究的个体很多.
所以适宜用系统抽样.(2)①频率分布表为分组频数频率20.160.380.440.2合计201②频率分布直方图为.分组频数频率频率/组距20.10.0260.30.0680.40.0840.20.04合计201【点睛】本题考查频率分布表和根据频率分布表绘制频率分布直方图,属于基础题.20、(1);(2);(3).【解析】
(1)设点P坐标为(x,y),运用两点的距离公式,化简整理,即可得到所求轨迹的方程;(2)由,则点到边的距离为,由点到线的距离公式得直线的斜率;(3)由题意可知:O,Q,M,N四点共圆且在以OQ为直径的圆上,设,则圆的圆心为运用直径式圆的方程,得直线的方程为,结合直线系方程,即可得到所求定点.【详解】(1)设点的坐标为由可得,,整理可得所以曲线的轨迹方程为.(2)依题意,,且,则点到边的距离为即点到直线的距离,解得所以直线的斜率为.(3)依题意,,则都在以为直径的圆上是直线上的动点,设则圆的圆心为,且经过坐标原点即圆的方程为,又因为在曲线上由,可得即直线的方程为由且可得,解得所以直线是过定点.【点睛】本题考查点的轨迹方程的求法,注意运用两点的距离公式,考查直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年吉林省经济管理干部学院单招综合素质考试题库附答案
- 《国内航行海船法定检验技术》核心考点复习试题库500题(含答案)
- 2025年化工招聘试题题库及答案
- 2025年大专生理考试试题及答案
- 2025-2030民办少儿街舞培训机构运营成本结构与盈利模型分析报告
- 2025-2030民办学校行业发展趋势分析及投资潜力评估报告
- 2025-2030民办学校教育市场体育特色课程开发与推广报告
- 2025-2030民办学前教育行业市场发展现状及未来趋势展望报告
- 2025-2030民办国际游学行业市场发展现状及未来趋势展望报告
- 2025-2030民办国际化学校发展现状与未来机遇研判
- 2025至2030中国军用无人机行业市场发展分析及发展趋势分析与未来投资战略咨询研究报告
- 人机交互技术及应用版课件完整版
- D级压力容器质量管理体系内审资料符合TSG07-2019附录M
- 环境表面清洁与消毒管理规范
- 农村私下卖房协议书
- 游泳馆转让店铺合同协议
- 人机料法环 培训
- AVL燃烧分析及在标定的应用培训
- 幼儿园改造方案1
- Unit 3 My friends Part B Let's talk(教学设计)-2024-2025学年人教PEP版英语四年级上册
- 2024年记者证考试全科目试题及答案
评论
0/150
提交评论