版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年聿怀实验学校中考数学考前最后一卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是()A. B.C. D.2.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF3.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.4.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根5.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣46.不等式5+2x<1的解集在数轴上表示正确的是().A. B. C. D.7.一次函数的图像不经过的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠09.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个 C.6个 D.7个10.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是()A.5 B.﹣2 C.2 D.﹣1二、填空题(共7小题,每小题3分,满分21分)11.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.12.已知关于x的一元二次方程有两个相等的实数根,则a的值是______.13.如图,数轴上不同三点对应的数分别为,其中,则点表示的数是__________.14.将一副三角尺如图所示叠放在一起,则的值是.15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.16.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.17.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.三、解答题(共7小题,满分69分)18.(10分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;19.(5分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。(1)求证:AE是⊙O的切线;(2)若AE=12,CD=10,求⊙O的半径。20.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?21.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22.(10分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.23.(12分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求的值.24.(14分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:根据题意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式组的解集为x>1,故选:B.【点睛】本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.2、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.3、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=12∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=12AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=12∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.4、D【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.5、B【解析】
利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、C【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.7、C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像8、C【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【详解】解:∵抛物线和轴有交点,,解得:且.故选.【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.9、B【解析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!10、A【解析】试题分析:原式=1-(-3)+=1+3+1=5,故选A.二、填空题(共7小题,每小题3分,满分21分)11、y=3x-1【解析】∵y=3x+1的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.故答案为y=3x﹣1.12、.【解析】试题分析:∵关于x的一元二次方程有两个相等的实数根,∴.考点:一元二次方程根的判别式.13、1【解析】
根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.【详解】∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案为1.【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.14、【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.15、1【解析】试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.考点:求反比例函数解析式.16、【解析】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣××=.故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.17、5【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.考点:直角三角形斜边上的中线.三、解答题(共7小题,满分69分)18、(1);(2)或;(3)1.【解析】
(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;(3)分别得出EO,AB的长,进而得出面积.【详解】(1)∵二次函数与轴的交点为和∴设二次函数的解析式为:∵在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:;(2)=−x2−2x+3,∴二次函数的对称轴为直线;∵点、是二次函数图象上的一对对称点;∴;∴使一次函数大于二次函数的的取值范围为或;(3)设直线BD:y=mx+n,代入B(1,0),D(−2,3)得,解得:,故直线BD的解析式为:y=−x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3−×1×1=1.【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.19、(1)证明见解析;(2).【解析】
(1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;(2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.【详解】(1)证明:连接OA,交BC于G,∵∠ABC=∠ADB.∠ABC=∠ADE,∴∠ADB=∠ADE,∴,∴OA⊥BC,∵四边形ABCE是平行四边形,∴AE∥BC,∴OA⊥AE,∴AE是⊙O的切线;(2)连接OC,∵AB=AC=CE,∴∠CAE=∠E,∵四边形ABCE是平行四边形,∴BC∥AE,∠ABC=∠E,∴∠ADC=∠ABC=∠E,∴△ACE∽△DAE,,∵AE=12,CD=10,∴AE2=DE•CE,144=(10+CE)CE,解得:CE=8或-18(舍),∴AC=CE=8,∴Rt△AGC中,AG==2,设⊙O的半径为r,由勾股定理得:r2=62+(r-2)2,r=,则⊙O的半径是.【点睛】此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.20、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.21、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】
(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.22、见解析【解析】试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.
证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC与△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.23、(1)A(,0)、B(3,0).(2)存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供销合同和采购合同(标准版)
- 合同管理制度补充办法解读(3篇)
- 2023年义务教育“双减”政策实施细则
- 创业企业融资方案及风险控制措施
- 小学信息技术课程教学范文
- 庆六一儿童节文艺汇演活动策划方案
- 人体语言沟通技巧与心理学基础
- 工程咨询公司资质申报指南
- 2025新能源电池市场发展现状分析及投资机遇评估研究报告
- 小学生阅读能力提升专项训练教材
- 贵州国企招聘:2025贵州凉都能源有限责任公司招聘10人备考题库含答案详解(综合题)
- 西藏自治区昌都市小学三年级上学期数学期末测试卷
- 传承三线精神、砥砺奋进前行课件
- 员工考证培训协议书
- 2025年郑州水务集团有限公司招聘80人模拟试卷带答案解析
- (完整版)理论力学选择题集锦(含答案)
- 北京教学科研楼安全文明施工方案
- 农村基层社会治理标准体系构成和要求
- 幼儿园体育活动的组织与实施
- 甲流的症状及预防知识PPT课件-2
- ECMO IABP完整版可编辑
评论
0/150
提交评论