高一数学知识点总结(21篇)_第1页
高一数学知识点总结(21篇)_第2页
高一数学知识点总结(21篇)_第3页
高一数学知识点总结(21篇)_第4页
高一数学知识点总结(21篇)_第5页
已阅读5页,还剩71页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第高一数学知识点总结(21篇)

高一数学知识点总结(精选21篇)

高一数学知识点总结篇1

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1)元素的确定性;

2)元素的互异性;

3)元素的无序性

说明:

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2、集合的表示方法:列举法与描述法。

二、集合间的基本关系

1、“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={_|_2—1=0}B={—1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3。不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作A∩B(读作”A交B”),即A∩B={_|_∈A,且_∈B}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={_|_∈A,或_∈B}。

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。

高一数学知识点总结篇2

考点要求:

1、几何体的展开图、几何体的三视图仍是高考的热点。

2、三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。

3、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。

4、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

知识结构:

1、多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的'直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2、旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到。

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3、空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的_轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的_′轴、y′轴,两轴相交于点O′,且使∠_′O′y′=45°或135°,已知图形中平行于_轴、y轴的线段,在直观图中平行于_′轴、y′轴。已知图形中平行于_轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高

在已知图形中过O点作z轴垂直于_Oy平面,在直观图中对应的z′轴,也垂直于_′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

高一数学知识点总结篇3

立体几何初步

柱、锥、台、球的结构特征

棱柱

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

圆柱

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

NO.2空间几何体的三视图

定义三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的'高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

NO.3空间几何体的直观图——斜二测画法

斜二测画法

斜二测画法特点

①原来与_轴平行的线段仍然与_平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

直线与方程

直线的倾斜角

定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α180°

直线的斜率

定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

过两点的直线的斜率公式:

(注意下面四点)

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

幂函数

定义

形如y=_^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当_为不同的数值时,幂函数的值域的不同情况如下:在_大于0时,函数的值域总是大于0的实数。在_小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则_=1/(_^k),显然_≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于_0,则a可以是任意实数;

排除了为0这种可能,即对于_0和_0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。

高一数学知识点总结篇4

归纳1

1、“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={_|_2—1=0}B={—1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

归纳2

形如y=k/_(k为常数且k≠0)的函数,叫做反比例函数。

自变量_的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(—_)=—f(_),图像关于原点对称。

另外,从反比例函数的.解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k分别为正和负(2和—2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

(3)△0时,反比例函数图像经过一,三象限,是减函数

当K0,则a可以是任意实数;

排除了为0这种可能,即对于_0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在_大于0时,函数的值域总是大于0的实数。

在_小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于_大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况、

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

解题方法:换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

高一数学知识点总结篇5

知识点1

一、集合有关概念

1、集合的'含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1、元素的确定性;

2、元素的互异性;

3、元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2、集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式_—3>2的解集是{_?R|_—3>2}或{_|_—3>2}

4、集合的分类:

1、有限集含有有限个元素的集合

2、无限集含有无限个元素的集合

3、空集不含任何元素的集合例:{_|_2=—5}

知识点2

I、定义与定义表达式

一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,抛物线向上开口;当a0),对称轴在y轴左;

当a与b异号时(即ab0时,抛物线与_轴有2个交点。

Δ=b’2—4ac=0时,抛物线与_轴有1个交点。

Δ=b’2—4ac0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

(3)△

高一数学知识点总结篇6

1.函数的奇偶性

(1)若f(_)是偶函数,那么f(_)=f(-_);

(2)若f(_)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(_)±f(-_)=0或(f(_)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(_)]的定义域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定义域为[a,b],求f(_)的定义域,相当于_∈[a,b]时,求g(_)的值域(即f(_)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(_,y)=0,关于y=_+a(y=-_+a)的对称曲线C2的方程为f(y-a,_+a)=0(或f(-y+a,-_+a)=0);

(4)曲线C1:f(_,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-_,2b-y)=0;

(5)若函数y=f(_)对_∈R时,f(a+_)=f(a-_)恒成立,则y=f(_)图像关于直线_=a对称,高中数学;

(6)函数y=f(_-a)与y=f(b-_)的图像关于直线_=对称;

高一数学知识点总结篇7

集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={_|_2-1=0}B={-1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

A?①任何一个集合是它本身的子集。A

B那就说集合A是集合B的真子集,记作AB(或BA)?B,且A?②真子集:如果A

C?C,那么A?B,B?③如果A

A那么A=B?B同时B?④如果A

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={_|_∈A,且_∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={_|_∈A,或_∈B}.

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

A}?S且_?_?记作:CSA即CSA={_

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

高一数学知识点总结篇8

知识点1

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1、元素的确定性;

2、元素的互异性;

3、元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2、集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式_—32的解集是{_?R|_—32}或{_|_—32}

4、集合的分类:

1、有限集含有有限个元素的集合

2、无限集含有无限个元素的集合

3、空集不含任何元素的集合例:{_|_2=—5}

知识点2

I、定义与定义表达式

一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

则称y为_的二次函数。

二次函数表达式的右边通常为二次三项式。

II、二次函数的三种表达式

一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

顶点式:y=a(_—h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(_—_?)(_—_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=—b/2ak=(4ac—b^2)/4a_?,_?=(—b±√b^2—4ac)/2a

III、二次函数的图像

在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

IV、抛物线的性质

1、抛物线是轴对称图形。对称轴为直线_=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

2、抛物线有一个顶点P,坐标为

P(—b/2a,(4ac—b^2)/4a)

当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在_轴上。

3、二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线向上开口;当a0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

知识点3

1、抛物线是轴对称图形。对称轴为直线

_=—b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

2、抛物线有一个顶点P,坐标为

P(—b/2a,(4ac—b’2)/4a)

当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在_轴上。

3、二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线向上开口;当a0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4、一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab0),对称轴在y轴左;

当a与b异号时(即ab0),对称轴在y轴右。

5、常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6、抛物线与_轴交点个数

Δ=b’2—4ac0时,抛物线与_轴有2个交点。

Δ=b’2—4ac=0时,抛物线与_轴有1个交点。

Δ=b’2—4ac0时,抛物线与_轴没有交点。_的取值是虚数(_=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

知识点4

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=_的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数。

知识点5

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

3、函数零点的求法:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:

(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

(3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

高一数学知识点总结篇9

一、集合有关概念

1、集合的含义

2、集合的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集:N_或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{_R|_-32},{_|_-32}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{_|_2=-5}

二、集合间的基本关系

1、“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={_|_2-1=0}B={-1,1}“元素相同则两集合相等”

即:

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4、子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).

高一数学知识点总结篇10

集合的运算

运算类型交集并集补集

定义域R定义域R

值域>0值域>0

在R上单调递增在R上单调递减

非奇非偶函数非奇非偶函数

函数图象都过定点(0,1)函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

二、对数函数

(一)对数

1.对数的概念:

一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)

说明:○1注意底数的限制,且;

○2;

○3注意对数的书写格式.

两个重要对数:

○1常用对数:以10为底的对数;

○2自然对数:以无理数为底的对数的对数.

指数式与对数式的互化

幂值真数

=N=b

底数

指数对数

(二)对数的运算性质

如果,且,,,那么:

○1+;

○2-;

○3.

注意:换底公式:(,且;,且;).

利用换底公式推导下面的结论:(1);(2).

(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.

○2对数函数对底数的限制:,且.

2、对数函数的性质:

a>100,则a可以是任意实数;

排除了为0这种可能,即对于_0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。

指数函数

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与_轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与_轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于_轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

定义

一般地,对于函数f(_)

(1)如果对于函数定义域内的任意一个_,都有f(-_)=-f(_),那么函数f(_)就叫做奇函数。

(2)如果对于函数定义域内的任意一个_,都有f(-_)=f(_),那么函数f(_)就叫做偶函数。

(3)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)同时成立,那么函数f(_)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)都不能成立,那么函数f(_)既不是奇函数又不是偶函数,称为非奇非偶函数。

高一数学知识点总结篇11

1、函数的奇偶性

(1)若f(_)是偶函数,那么f(_)=f(-_);

(2)若f(_)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(_)±f(-_)=0或(f(_)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(_)]的定义域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定义域为[a,b],求f(_)的定义域,相当于_∈[a,b]时,求g(_)的值域(即f(_)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(_,y)=0,关于y=_+a(y=-_+a)的对称曲线C2的方程为f(y-a,_+a)=0(或f(-y+a,-_+a)=0);

(4)曲线C1:f(_,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-_,2b-y)=0;

(5)若函数y=f(_)对_∈R时,f(a+_)=f(a-_)恒成立,则y=f(_)图像关于直线_=a对称;

(6)函数y=f(_-a)与y=f(b-_)的图像关于直线_=对称;

4、函数的周期性

(1)y=f(_)对_∈R时,f(_+a)=f(_-a)或f(_-2a)=f(_)(a0)恒成立,则y=f(_)是周期为2a的周期函数;

(2)若y=f(_)是偶函数,其图像又关于直线_=a对称,则f(_)是周期为2|a|的周期函数;

(3)若y=f(_)奇函数,其图像又关于直线_=a对称,则f(_)是周期为4|a|的周期函数;

(4)若y=f(_)关于点(a,0),(b,0)对称,则f(_)是周期为2的周期函数;

(5)y=f(_)的图象关于直线_=a,_=b(a≠b)对称,则函数y=f(_)是周期为2的周期函数;

(6)y=f(_)对_∈R时,f(_+a)=-f(_)(或f(_+a)=,则y=f(_)是周期为2的周期函数;

5、方程k=f(_)有解k∈D(D为f(_)的值域);

a≥f(_)恒成立a≥[f(_)]ma_,;a≤f(_)恒成立a≤[f(_)]min;

(1)(a0,a≠1,b0,n∈R+);

(2)logaN=(a0,a≠1,b0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a0,a≠1,N0);

6、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

7、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

8、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(_)与y=f-1(_)互为反函数,设f(_)的定义域为A,值域为B,则有f[f--1(_)]=_(_∈B),f--1[f(_)]=_(_∈A);

9、处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

10、依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

高一数学知识点总结篇12

集合的运算

运算类型交集并集补集

定义域R定义域R

值域>0值域>0

在R上单调递增在R上单调递减

非奇非偶函数非奇非偶函数

函数图象都过定点(0,1)函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

二、对数函数

(一)对数

1.对数的概念:

一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)

说明:○1注意底数的限制,且;

○2;

○3注意对数的书写格式.

两个重要对数:

○1常用对数:以10为底的对数;

○2自然对数:以无理数为底的对数的对数.

指数式与对数式的互化

幂值真数

=N=b

底数

指数对数

(二)对数的运算性质

如果,且,,,那么:

○1+;

○2-;

○3.

注意:换底公式:(,且;,且;).

利用换底公式推导下面的结论:(1);(2).

(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.

○2对数函数对底数的限制:,且.

2、对数函数的性质:

a>100时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

【(四)、函数的奇偶性】

1、函数的奇偶性的定义:对于函数f(_),如果对于函数定义域内的任意一个_,都有f(-_)=-f(_)(或f(-_)=f(_)),那么函数f(_)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(_)为奇函数或偶函数的必要不充分条件;(2)f(_)=-f(_)或f(-_)=f(_)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(_)是奇函数还是偶函数,f(|_|)总是偶函数;

(2)f(_)、g(_)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(_)+g(_)是奇函数,f(_)·g(_)是偶函数,类似地有“奇±奇=奇”“奇_奇=偶”,“偶±偶=偶”“偶_偶=偶”“奇_偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

(3)若奇函数f(_)在_=0处有意义,则f(0)=0成立.

(4)若f(_)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(_)的定义域关于原点对称,则F(_)=f(_)+f(-_)是偶函数,G(_)=f(_)-f(-_)是奇函数.

(6)奇偶性的推广

函数y=f(_)对定义域内的任一_都有f(a+_)=f(a-_),则y=f(_)的图象关于直线_=a对称,即y=f(a+_)为偶函数.函数y=f(_)对定义域内的任-_都有f(a+_)=-f(a-_),则y=f(_)的图象关于点(a,0)成中心对称图形,即y=f(a+_)为奇函数。

【(五)、函数的单调性】

1、单调函数

对于函数f(_)定义在某区间[a,b]上任意两点_1,_2,当_1>_2时,都有不等式f(_1)>(或_2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.

5、复合函数y=f[g(_)]的单调性

若u=g(_)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(_)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.

在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.

6、证明函数的单调性的方法

(1)依定义进行证明.其步骤为:①任取_1、_2∈M且_1(或0,则f(_)为增函数;如果f′(_)0)

沿y轴向平移b个单位

y=f(_±a)(a>0)

沿_轴向平移a个单位

y=-f(_)

作关于_轴的对称图形

y=f(|_|)

右不动、左右关于y轴对称

y=|f(_)|

上不动、下沿_轴翻折

y=f-1(_)

作关于直线y=_的对称图形

y=f(a_)(a>0)

横坐标缩短到原来的,纵坐标不变

y=af(_)

纵坐标伸长到原来的|a|倍,横坐标不变

y=f(-_)

作关于y轴对称的图形

【例】定义在实数集上的函数f(_),对任意_,y∈R,有f(_+y)+f(_-y)=2f(_)·f(y),且f(0)≠0.

①求证:f(0)=1;

②求证:y=f(_)是偶函数;

③若存在常数c,使求证对任意_∈R,有f(_+c)=-f(_)成立;试问函数f(_)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.

思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.

解答:①令_=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.

②令_=0,则有f(_)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(_)为偶函数.

③分别用(c>0)替换_、y,有f(_+c)+f(_)=

所以,所以f(_+c)=-f(_).

两边应用中的结论,得f(_+2c)=-f(_+c)=-[-f(_)]=f(_),

所以f(_)是周期函数,2c就是它的一个周期.

高一数学知识点总结篇13

一、函数的概念与表示

1、映射

(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素

①定义域②对应法则③值域

两个函数是同一个函数的条件:三要素有两个相同

二、函数的解析式与定义域

1、求函数定义域的主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

三、函数的值域

1求函数值域的方法

①直接法:从自变量_的范围出发,推出y=f(_)的取值范围,适合于简单的复合函数;

②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

④分离常数:适合分子分母皆为一次式(_有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

四.函数的奇偶性

1.定义:设y=f(_),_∈A,如果对于任意∈A,都有,则称y=f(_)为偶函数。

如果对于任意∈A,都有,则称y=f(_)为奇

函数。

2.性质:

①y=f(_)是偶函数y=f(_)的图象关于轴对称,y=f(_)是奇函数y=f(_)的图象关于原点对称,

②若函数f(_)的定义域关于原点对称,则f(0)=0

③奇±奇=奇偶±偶=偶奇_奇=偶偶_偶=偶奇_偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]

3.奇偶性的判断

①看定义域是否关于原点对称②看f(_)与f(-_)的关系

五、函数的单调性

1、函数单调性的定义:

2设是定义在M上的函数,若f(_)与g(_)的单调性相反,则在M上是减函数;若f(_)与g(_)的单调性相同,则在M上是增函数。

高一数学知识点总结篇14

二次函数

I.定义与定义表达式

一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,反比例函数图像经过一,三象限,是减函数

当K

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。

2.对于双曲线y=k/_,若在分母上加减任意一个实数(即y=k/(_±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

高一数学知识点总结篇15

圆的方程定义:

圆的标准方程(_—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ>0,直线和圆相交。②Δ=0,直线和圆相切。③Δ0,直线和圆相交.②Δ=0,直线和圆相切.③Δb>0)或+=1(a>b>0)(其中,a2=b2+c2)

2.双曲线:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

3.抛物线:y2=±2p_(p>0),_2=±2py(p>0)

三、圆锥曲线的性质

1.椭圆:+=1(a>b>0)

(1)范围:|_|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:_=±

2.双曲线:-=1(a>0,b>0)(1)范围:|_|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:_=±(6)渐近线:y=±_

3.抛物线:y2=2p_(p>0)(1)范围:_≥0,y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:_=-

高一数学知识点总结篇16

1、集合的概念

集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。集合是由它的元素确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义

有限集和无限集是针对非空集合来说的。我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

几个常用数集N、N_N+、Z、Q、R要记牢。

3、集合的表示方法

(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:

①元素不太多的有限集,如{0,1,8}

②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}

③呈现一定规律的无限集,如{1,2,3,…,n,…}

●注意a与{a}的区别

●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{_|y=_2},{y|y=_2},{(_,y)|y=_2}是三个不同的集合。

4、集合之间的关系

●注意区分“从属”关系与“包含”关系

“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用等符号,会用Venn图描述集合之间的关系是基本要求。

●注意辨清Φ与{Φ}两种关系。

高一数学知识点总结篇17

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性,

(2)元素的互异性,

(3)元素的无序性,

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

?注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{_?R|_-3>2},{_|_-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{_|_2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={_|_2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

?有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有唯一确定的数f(_)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(_),_∈A.其中,_叫做自变量,_的取值范围A叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)|_∈A}叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数_的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

2.值域:先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(_),(_∈A)中的_为横坐标,函数值y为纵坐标的点P(_,y)的集合C,叫做函数y=f(_),(_∈A)的图象.C上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_、y为坐标的点(_,y),均在C上.

(2)画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素_,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:A→B

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(_)(_∈A),则y=f[g(_)]=F(_)(_∈A)称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(_)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量_1,_2,当_1

如果对于区间D上的任意两个自变量的值_1,_2,当_1f(_2),那么就说f(_)在这个区间上是减函数.区间D称为y=f(_)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2)图象的特点

如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A)定义法:

○1任取_1,_2∈D,且_1

○2作差f(_1)-f(_2);

○3变形(通常是因式分解和配方);

○4定号(即判断差f(_1)-f(_2)的正负);

○5下结论(指出函数f(_)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.

(2).奇函数

一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=—f(_),那么f(_)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-_)与f(_)的关系;

○3作出相应结论:若f(-_)=f(_)或f(-_)-f(_)=0,则f(_)是偶函数;若f(-_)=-f(_)或f(-_)+f(_)=0,则f(_)是奇函数.

(2)由f(-_)±f(_)=0或f(_)/f(-_)=±1来判定;

(3)利用定理,或借助函数的图象判定.

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1)凑配法

2)待定系数法

3)换元法

4)消参法

10.函数最大(小)值(定义见课本p36页)

○1利用二次函数的性质(配方法)求函数的最大(小)值

○2利用图象求函数的最大(小)值

○3利用函数单调性的判断函数的最大(小)值:

如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有最大值f(b);

如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);

高一数学知识点总结篇18

考点一、映射的概念

1、了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

2、映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素_,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一

考点二、函数的概念

1、函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数_,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(_),_A.其中_叫自变量,_的取值范围A叫函数的定义域;与_的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

2、函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

3、区间的概念:设a,bR,且a

①(a,b)={_a

②(a,+∞)={a}

③[a,+∞)={≥a}

④(-∞,b)={

考点三、函数的表示方法

1、函数的三种表示方法列表法图象法解析法

2、分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:

①分段函数是一个函数,不要误认为是几个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况

①若f(_)是整式,则函数的定义域是实数集R;

②若f(_)是分式,则函数的定义域是使分母不等于0的实数集;

③若f(_)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

④若f(_)是对数函数,真数应大于零。

⑤因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(_)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

⑦若f(_)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

高一数学知识点总结篇19

圆的方程定义:

圆的标准方程(_—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ0,直线和圆相交、②Δ=0,直线和圆相切、③Δ0,直线和圆相离。

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

①dR,直线和圆相离、

2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足。

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

高一数学知识点总结篇20

一、直线与方程

(1)直线的倾斜角

定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

(2)直线的斜率

①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于_1,所以它的方程是_=_1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论