《函数基本初等函数》复习导引(一)_第1页
《函数基本初等函数》复习导引(一)_第2页
《函数基本初等函数》复习导引(一)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《函数、基本初等函数》复习导引(一)函数是高中数学中极为重要的内容,函数的观点和方法贯穿了整个高中数学,是高中数学的一条主线.历年高考中都对函数进行重点考查,在选择题、填空题和解答题三大题型中都有函数试题.高考重点考查的内容有:函数的概念、函数的解析式、函数的定义域、值域、最值、单调性、奇偶性等性质,函数的图象和图象变换及以基本初等函数为载体的综合题和应用题.所以在复习函数时应以复习基础知识、强化函数应用、培养能力为重点.1.函数及其表示(1)函数由定义域、值域、对应关系构成.其中对应关系是核心,定义域是根本.只有当两个函数的定义域和对应关系完全一致(即对于相同的自变量其所对应的函数值相等)时,这两个函数才是同一函数.要特别注意:研究函数时,必须遵循“定义域优先”的原则.(2)求函数定义域时,一般应遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③为偶次根式时,定义域是使被开方数为非负值时的实数的集合;④对数函数的真数大于零;且当对数函数或指数函数的底数中含变量时,底数须大于零且不等于1;⑤零指数幂的底数不能为零;⑥若是有限个基本函数运算合成的函数,则其定义域一般是各基本初等函数的定义域的交集;⑦对于求复合函数定义域问题,一般步骤是:若已知的定义域为[a,b],其复合函数的定义域应由不等式a≤≤b解出;⑧对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论;⑨由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(3)函数的值域取决于定义域和对应法则.求函数值域常用的方法有:配方法、换元法、判别式法、单调性法、基本不等式法、利用函数的有界性、数形结合法等,但不论采用什么方法求值域,均应考虑其定义域.另外,还要特别注意,在利用配方法、基本不等式、判别式法求值域时,一定要注意等号是否成立,必要时需注明等号成立的条件.(4)函数的最值与函数的值域有着密切的联系.事实上,如果在函数值域中存在一个最大(小)数,这个数就是函数的最大(小)值.函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而有时借助函数图象的直观性可直接得出函数的最值,另外要注意函数的单调性对函数最值的影响,尤其是对于闭区间上函数的最值.比如定义在闭区间[m,n]上的函数,若单调递增,则它的最小、最大值分别为.对于单调性不确定的函数要进行分类讨论.(5)解析法、列表法和图象法是函数的三种常用表示方法.求函数的解析式一般有四种情况:①根据某实际问题需建立一种函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式;②根据题中给出函数特征,求函数的解析式,可用待定系数法.比如函数是二次函数,可设为,其中a,b,c是待定系数,根据题设条件,列出方程组,解出a,b,c即可;③换元法求解析式,由求的问题,往往可设,从中解出,代入进行换元求解;④解方程组法:已知满足某个等式,这个等式除了是未知量外,还出现其他未知量,如等,必须根据已知等式再构造其他等式组成方程组,通过解方程组求出.2.函数的基本性质(1)函数的单调性理解函数单调性定义,应注意下列几点:①函数的单调性只能在其定义域内讨论;②单调性是与“区间”紧密相关的概念,一个函数在不同的区间上可以有不同的单调性;③定义中的具有任意性,若要证明在区间[a,b]上是递增或者递减的,就必须证明对区间上任意的两点,当时都有不等式或.若要证明在区间[a,b]上不是单调函数,只要举出反例即可;④判断函数的单调性,首先必须明确函数的定义域.在定义域上如果有多个单调区间,区间之间用“、”分开或用“和”相连,不能用“∪”.判断函数单调性的常用方法:①定义法;②两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;③奇函数在关于原点对称的两个区间上具有相同的单调性;偶函数在关于原点对称的两个区间上具有相反的单调性;④互为反函数的两个函数具有相同的单调性.(2)函数的奇偶性奇偶函数的定义是判断函数奇偶性的主要依据,为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之亦真.因此也可以利用函数图象的对称性去判断函数的奇偶性.若奇函数的定义域含有数0,则必有.若是偶函数,则.在处理有关问题时,常用到以下几个结论:①两个奇函数的和仍为奇函数;②两个偶函数的和仍为偶函数;③两个奇函数的积是偶函数;④两个偶函数的积是偶函数;⑤一个奇函数与一个偶函数的积是奇函数.判断函数的奇偶性,包括判断一个函数是奇函数,或者是偶函数,或者既不是奇函数也不是偶函数,或者既是奇函数又是偶函数.在解题过程中要注意挖掘函数的奇偶性特征,为解决问题提供方便.3.函数的图象与性质(1)若函数满足,则函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论