北京市朝阳区名校2025届九年级数学第一学期期末检测模拟试题含解析_第1页
北京市朝阳区名校2025届九年级数学第一学期期末检测模拟试题含解析_第2页
北京市朝阳区名校2025届九年级数学第一学期期末检测模拟试题含解析_第3页
北京市朝阳区名校2025届九年级数学第一学期期末检测模拟试题含解析_第4页
北京市朝阳区名校2025届九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市朝阳区名校2025届九年级数学第一学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个2.如图放置的几何体的左视图是()A. B. C. D.3.如图,在⊙O中,弦BC//OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为().A.30° B.40°C.50° D.60°4.如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是()A. B. C. D.5.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是().A. B. C. D.6.已知关于x的一元二次方程xaxb0ab的两个根为x1、x2,x1x2则实数a、b、x1、x2的大小关系为()A.ax1bx2 B.ax1x2b C.x1ax2b D.x1abx27.的绝对值为()A. B. C. D.8.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:69.已知三地顺次在同-直线上,甲、乙两人均骑车从地出发,向地匀速行驶.甲比乙早出发分钟;甲到达地并休息了分钟后,乙追上了甲.甲、乙同时从地以各自原速继续向地行驶.当乙到达地后,乙立即掉头并提速为原速的倍按原路返回地,而甲也立即提速为原速的二倍继续向地行驶,到达地就停止.若甲、乙间的距离(米)与甲出发的时间(分)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙提速前的速度分别为米/分、米/分.B.两地相距米C.甲从地到地共用时分钟D.当甲到达地时,乙距地米10.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,11.如图:矩形的对角线、相较于点,,,若,则四边形的周长为()A. B. C. D.12.如图,AB、CD相交于点O,AD∥CB,若AO=2,BO=3,CD=6,则CO等于()A.2.4 B.3 C.3.6 D.4二、填空题(每题4分,共24分)13.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)14.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.15.用配方法解方程时,可配方为,其中________.16.如图,是的内接三角形,,的长是,则的半径是__________.17.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.18.如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD上的一动点,连接PC,过点P作PE⊥PC交AB于点E.以CE为直径作⊙O,当点P从点A移动到点D时,对应点O也随之运动,则点O运动的路程长度为_____.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.20.(8分)元旦期间,商场中原价为100元的某种商品经过两次连续降价后以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率.21.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.22.(10分)已知二次函数.(1)将二次函数化成的形式;(2)在平面直角坐标系中画出的图象;(3)结合函数图象,直接写出时x的取值范围.23.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)证明:△ABD≌△BCE;(2)证明:△ABE∽△FAE;(3)若AF=7,DF=1,求BD的长.24.(10分)如图,矩形的对角线与相交于点.延长到点,使,连结.(1)求证:四边形是平行四边形;(2)若,,请直接写出平行四边形的周长.25.(12分)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y(万件)与销售单价x(元)之间的函数关系如下表格所示:销售单价x(元)…25303540…每月销售量y(万件)…50403020…(1)求每月的利润W(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?26.在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小明围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,

∴摸到白球的频率为1-0.15-0.45=0.4,

故口袋中白色球的个数可能是40×0.4=16个.

故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2、C【分析】左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.【详解】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选C.【点睛】本题考查简单组合体的三视图.3、B【分析】由圆周角定理(同弧所对的圆周角是圆心角的一半)得到∠AOB,再由平行得∠MBC.【详解】解:∵∠C=20°

∴∠AOB=40°

又∵弦BC∥半径OA

∴∠MBC=∠AOB=40°,故选:B.【点睛】熟练掌握圆周角定理,平行线的性质是解答此题的关键.4、C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.5、C【分析】根据相似图形对应边成比例列出关系式即可求解.【详解】如图,矩形ABCD对折后所得矩形与原矩形相似,则矩形ABCD∽矩形BFEA,设矩形的长边长是a,短边长是b,则AB=CD=EF=b,AD=BC=a,BF=AE=,根据相似多边形对应边成比例得:,即∴∴故选C.【点睛】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.6、D【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=时,由题意可知:(x−a)(x−b)−=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.7、C【分析】根据绝对值的定义即可求解.【详解】的绝对值为故选C.【点睛】此题主要考查绝对值,解题的关键是熟知其定义.8、B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:1.故选B.考点:位似变换.9、C【分析】设出甲、乙提速前的速度,根据“乙到达B地追上甲”和“甲、乙同时从B出发,到相距900米”建立二元一次方程组求出速度即可判断A,然后根据乙到达C的时间求A、C之间的距离可判断B,根据乙到达C时甲距C的距离及此时速度可计算时间判断C,根据乙从C返回A时的速度和甲到达C时乙从C出发的时间即可计算路程判断出D.【详解】A.设甲提速前的速度为米/分,乙提速前的速度为米/分,由图象知,当乙到达B地追上甲时,有:,化简得:,当甲、乙同时从B地出发,甲、乙间的距离为900米时,有:,化简得:,解方程组:,得:,故甲提速前的速度为300米/分,乙提速前的速度为400米/分,故选项A正确;B.由图象知,甲出发23分钟后,乙到达C地,则A、C两地相距为:(米),故选项B正确;C.由图象知,乙到达C地时,甲距C地900米,这时,甲提速为(米/分),则甲到达C地还需要时间为:(分钟),所以,甲从A地到C地共用时为:(分钟),故选项C错误;D.由题意知,乙从C返回A时,速度为:(米/分钟),当甲到达C地时,乙从C出发了2.25分钟,此时,乙距A地距离为:(米),故选项D正确.故选:C.【点睛】本题为方程与函数图象的综合应用,正确分析函数图象,明确特殊点的意义是解题的关键.10、C【解析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【点睛】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.11、B【分析】根据矩形的性质可得OD=OC,由,得出四边形OCED为平行四边形,利用菱形的判定得到四边形OCED为菱形,由AC的长求出OC的长,即可确定出其周长.【详解】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD.∵AC=2,∴OA=OB=OC=OD=1.∵CE∥BD,DE∥AC,∴四边形OCED为平行四边形.∵OD=OC,∴四边形OCED为菱形.∴OD=DE=EC=OC=1.则四边形OCED的周长为2×1=2.故选:B.【点睛】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握特殊四边形的判定与性质是解本题的关键.12、C【分析】由平行线分线段成比例定理,得到;利用AO、BO、CD的长度,求出CO的长度,即可解决问题.【详解】如图,∵AD∥CB,

∴;

∵AO=2,BO=3,CD=6,

∴,解得:CO=3.6,

故选C.【点睛】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..二、填空题(每题4分,共24分)13、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.14、【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【点睛】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.15、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,,,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.16、【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB、OC,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:.故答案为:.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.17、x(x-12)=864【解析】设矩形田地的长为x步,那么宽就应该是(x−12)步.根据矩形面积=长×宽,得:x(x−12)=864.故答案为x(x−12)=864.18、.【分析】连接AC,取AC的中点K,连接OK.设AP=x,AE=y,求出AE的最大值,求出OK的最大值,由题意点O的运动路径的长为2OK,由此即可解决问题.【详解】解:连接AC,取AC的中点K,连接OK.设AP=x,AE=y,∵PE⊥CP∴∠APE+∠CPD=90°,且∠AEP+∠APE=90°∴∠AEP=∠CPD,且∠EAP=∠CDP=90°∵△APE∽△DCP∴,即x(3﹣x)=2y,∴y=x(3﹣x)=﹣x2+x=﹣GXdjs4436236(x﹣)2+,∴当x=时,y的最大值为,∴AE的最大值=,∵AK=KC,EO=OC,∴OK=AE=,∴OK的最大值为,由题意点O的运动路径的长为2OK=,故答案为:.【点睛】考查了轨迹、矩形的性质、三角形的中位线定理和二次函数的应用等知识,解题的关键是学会构建二次函数解决最值问题.三、解答题(共78分)19、⑴OE=2;⑵见详解⑶【分析】(1)连结OE,根据垂径定理可以得到,得到∠AOE=60º,OC=OE,根据勾股定理即可求出.(2)只要证明出∠OEM=90°即可,由(1)得到∠AOE=60º,根据EM∥BD,∠B=∠M=30°,即可求出.(3)连接OF,根据∠APD=45°,可以求出∠EDF=45º,根据圆心角为2倍的圆周角,得到∠BOE,用扇形OEF面积减去三角形OEF面积即可.【详解】(1)连结OE∵DE垂直OA,∠B=30°∴CE=DE=3,∴∠AOE=2∠B=60º,∴∠CEO=30°,OC=OE由勾股定理得OE=(2)∵EM∥BD,∴∠M=∠B=30º,∠M+∠AOE=90º∴∠OEM=90º,即OE⊥ME,∴EM是⊙O的切线(3)再连结OF,当∠APD=45º时,∠EDF=45º,∴∠EOF=90ºS阴影==【点睛】本题主要考查了圆的切线判定、垂径定理、平行线的性质定理以及扇形面积的简单计算,熟记概念是解题的关键.20、10%【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x),第二次在第一次降价后的基础上再降,变为100(x-1)2,从而列出方程,求出答案.【详解】解:设每次降价的百分率为x,第二次降价后价格变为100(x-1)2元,

根据题意得:100(x-1)2=81,

即x-1=0.9,

解之得x1=1.9,x2=0.1.

因x=1.9不合题意,故舍去,所以x=0.1.

即每次降价的百分率为0.1,即10%.

答:这个百分率为10%.【点睛】此题考查了一元二次方程的应用,解答本题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍,难度一般.21、(1)详见解析;(2)详见解析;(3)AF=.【分析】(1)先根据角平分线得出∠CAD=∠CAB,进而判断出△ADC∽△ACB,即可得出结论;(2)先利用直角三角形的性质得出CE=AE,进而得出∠ACE=∠CAE,从而∠CAD=∠ACE,即可得出结论;(3)由(1)的结论求出AC,再求出CE=3,最后由(2)的结论得出△CFE∽△AFD,即可得出结论.【详解】解:(1)∵AC平分∠BAD,∴∠CAD=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB;(2)在Rt△ABC中,∵E为AB的中点,∴CE=AE(直角三角形斜边的中线等于斜边的一半),∴∠ACE=∠CAE,∵AC平分∠BAD,∴∠CAD=∠CAE,∴∠CAD=∠ACE,∴CE∥AE;(3)由(1)知,AC2=AD•AB,∵AD=4,AB=6,∴AC2=4×6=24,∴AC=2,在Rt△ABC中,∵E为AB的中点,∴CE=AB=3,由(2)知,CE∥AD,∴△CFE∽△AFD,∴,∴,∴AF=.【点睛】此题考查的是相似三角形的判定及性质、直角三角形的性质和平行线的判定,掌握相似三角形的判定及性质、直角三角形斜边的中线等于斜边的一半和平行线的判定是解决此题的关键.22、(1);(2)画图见解析;(3)-3<x<1【分析】(1)运用配方法进行变形即可;(2)根据(1)中解析式可以先得出顶点坐标以及对称轴和开口方向朝下,然后进一步分别可以求出与x轴的两个交点,及其与y轴的交点,最后用光滑的曲线连接即可,;(3)根据所画出的图像得出结论即可.【详解】(1);(2)由(1)得:顶点坐标为:(-1,4),对称轴为:,开口向下,当x=0时,y=3,∴交y轴正半轴3处,当y=0时,x=1或-3,∴与x轴有两个交点,综上所述,图像如图所示:(3)根据(2)所画图像可得,,-3<x<1.【点睛】本题主要考查了二次函数图像的性质,熟练掌握相关概念是解题关键.23、(1)证明见解析;(2)证明见解析;(3)BD=2.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;

(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;

(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=AD•DF=(AF+DF)•DF.【详解】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中∵,∴△ABD≌△BCE(SAS);(2)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点睛】本题考查的知识点是相似三角形的判定与性质,全等三角形的判定,等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质,全等三角形的判定,等边三角形的性质.24、(1)见解析;(2)1.【分析】(1)因为,所以,利用一组对边平行且相等即可证明;(2)利用矩形的性质得出,进而利用求出CD的值,然后利用勾股定理求出AD的值,即可求周长【详解】(1)∵是矩形∴∴四边形是平行四边形;(2)∵是矩形∴∵四边形是平行四边形∴平行四边形的周长为【点睛】本题主要考查平行四边形的判定及性质,矩形的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论