版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省舞阳中学2025届数学九上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.二次函数与坐标轴的交点个数是()A.0个 B.1个 C.2个 D.3个2.半径为6的圆上有一段长度为1.5的弧,则此弧所对的圆心角为()A. B. C. D.3.两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9︰16 B.3︰4 C.9︰4 D.3︰164.如图,两点在反比例函数的图象上,两点在反比例函数的图象上,轴于点,轴于点,,则的值是()A.2 B.3 C.4 D.65.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.下列说法中正确的是(
)A.弦是直径 B.弧是半圆 C.半圆是圆中最长的弧 D.直径是圆中最长的弦8.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-19.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定10.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上.若,则CD的长为()A.1 B. C. D.2二、填空题(每小题3分,共24分)11.计算:×=______.12.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.13.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.14.若方程x2﹣2x﹣4=0的两个实数根为a,b,则-a2-b2的值为_________。15.如图所示,个边长为1的等边三角形,其中点,,,,…在同一条直线上,若记的面积为,的面积为,的面积为,…,的面积为,则______.16.设m,n分别为一元二次方程x2+2x-2020=0的两个实数根,则m2+3m+n=______.17.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为_____.18.抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.20.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB绕原点顺时针旋转后得到的△,并写出点的坐标;(2)在(1)的条件下,求线段在旋转过程中扫过的扇形的面积.21.(6分)已知一次函数y1=ax+b的图象与反比例函数y2=的图象相交于A、B两点,坐标分别为(—2,4)、(4,—2).(1)求两个函数的解析式;(2)求△AOB的面积;(3)直线AB上是否存在一点P(A除外),使△ABO与以B﹑P、O为顶点的三角形相似?若存在,直接写出顶点P的坐标.22.(8分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.(1)若的半径为,,求的长;(2)求证:与相切.23.(8分)国庆期间电影《我和我的祖国》上映,在全国范围内掀起了观影狂潮.小王一行5人相约观影,由于票源紧张,只好选择3人去A影院,余下2人去B影院,已知A影院的票价比B影院的每张便宜5元,5张影票的总价格为310元.(1)求A影院《我和我的祖国》的电影票为多少钱一张;(2)次日,A影院《我和我的祖国》的票价与前一日保持不变,观影人数为4000人.B影院为吸引客源将《我和我的祖国》票价调整为比A影院的票价低a%但不低于50元,结果B影院当天的观影人数比A影院的观影人数多了2a%,经统计,当日A、B两个影院《我和我的祖国》的票房总收入为505200元,求a的值.24.(8分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.25.(10分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.26.(10分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先计算根的判别式的值,然后根据b2−4ac决定抛物线与x轴的交点个数进行判断.【详解】∵△=22−4×1×2=−4<0,∴二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.∴二次函数y=x2+2x+2与坐标轴的交点个数是1个,故选:B.【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数;△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.2、B【分析】根据弧长公式,即可求解.【详解】∵,∴,解得:n=75,故选B.【点睛】本题主要考查弧长公式,掌握是解题的关键.3、B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方4、D【分析】连接OA、OB、OC、OD,由反比例函数的性质得到,,结合两式即可得到答案.【详解】连接OA、OB、OC、OD,由题意得,,∵,∴,∵,∴,∴,∵AC=3,BD=2,EF=5,∴解得OE=2,∴,故选:D.【点睛】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k的几何意义是解题的关键.5、A【分析】反比例函数在第一象限的一支y随x的增大而减小,只需判断a与2a的大小便可得出答案.【详解】∵a<2a又∵反比例函数在第一象限的一支y随x的增大而减小∴故选:A.【点睛】本题考查比较大小,需要用到反比例函数y与x的增减变化,本题直接读图即可得出.6、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7、D【解析】试题分析:根据弦、直径、弧、半圆的概念一一判断即可.【解答】解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选D.【考点】圆的认识.8、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.9、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.10、D【分析】由直角三角形的性质可得AB=2,BC=2AB=4,由旋转的性质可得AD=AB,可证△ADB是等边三角形,可得BD=AB=2,即可求解.【详解】解:∵AC=,∠B=60°,∠BAC=90°
∴AB=2,BC=2AB=4,
∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,
∴AD=AB,且∠B=60°
∴△ADB是等边三角形
∴BD=AB=2,
∴CD=BC-BD=4-2=2
故选:D.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题(每小题3分,共24分)11、1.【解析】×==1,故答案为1.12、或【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C在优弧AB上时,如图,连接OA、OB、OC,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;当点C在劣弧AB上时,如图,∵PA是⊙O的切线,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.综上:α与β的关系是或.故答案为:或.【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.13、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.14、-12【分析】根据一元二次方程的解及根与系数的关系,得出两根之和与两根之积,再将待求式利用完全平方公式表示成关于两根之和与两根之积的式子,最后代入求值即可.【详解】解:∵方程x2﹣2x﹣4=0的两个实数根为,∴,∴=-4-8=-12.故答案为:-12.【点睛】本题考查了根与系数的关系以及一元二次方程的解,将待求式利用完全平方公式表示成关于两根之和与两根之积的式子是解题的关键.15、【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上,可作出直线BB1.易求得△ABC1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值.【详解】如图连接BB1,B1B2,B2B3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上.∴S△ABC1=×1×=∵B
B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1为等边三角形则C1D1=BD1=;,△C1B1D1中C1D1边上的高也为;∴S1=××=;同理可得;则=,∴S2=××=;同理可得:;∴=,Sn=××=.【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用.16、2018.【解析】根据题意得.m2+3m+n=2020+m+n,再根据m,n分别为一元二次方程x2+2x-2020=0的两个实数根,得m+n=-2,带入m2+3m+n计算即可.【详解】解:∵m为一元二次方程x2+2x-2020=0的实数根,∴m2+2m-2020=0,即m2=-2m+2020,∴m2+3m+n=-2m+2020+3m+n=2020+m+n,∵m,n分别为一元二次方程x2+2x-2020=0的两个实数根,∴m+n=-2,∴m2+3m+n=2020-2=2018.【点睛】本题考查了一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.17、【解析】试题解析:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:故答案为18、1【分析】易得顶点(2,-6),根据待定系数法,求出一次函数解析式,进而求出直线与坐标轴的交点,根据三角形的面积公式,即可求解.【详解】∵抛物线,∴顶点(2,-6),∵一次函数的图象经过点,∴,解得:k=,∴一次函数解析式为:,∴直线与坐标轴的交点坐标分别是:(0,3),(,0),∴一次函数图象与两坐标轴所围成的三角形面积=.故答案是:1.【点睛】本题主要考查二次函数和一次函数图象与平面几何的综合,掌握一次函数图象与坐标轴的交点坐标的求法,是解题的关键.三、解答题(共66分)19、(1);(2)PG=;(3)存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.【解析】试题分析:(1)将A(1,1),B(1,4)代入,运用待定系数法即可求出抛物线的解析式.(2)由E(m,1),B(1,4),得出P(m,),G(m,4),则由可用含m的代数式表示PG的长度.(3)先由抛物线的解析式求出D(﹣3,1),则当点P在直线BC上方时,﹣3<m<1.分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.试题解析:解:(1)∵抛物线与x轴交于点A(1,1),与y轴交于点B(1,4),∴,解得.∴抛物线的解析式为.(2)∵E(m,1),B(1,4),PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,),G(m,4).∴PG=.(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.∵,∴当y=1时,,解得x=1或﹣3.∴D(﹣3,1).当点P在直线BC上方时,﹣3<m<1.设直线BD的解析式为y=kx+4,将D(﹣3,1)代入,得﹣3k+4=1,解得k=.∴直线BD的解析式为y=x+4.∴H(m,m+4).分两种情况:①如果△BGP∽△DEH,那么,即.由﹣3<m<1,解得m=﹣1.②如果△PGB∽△DEH,那么,即.由﹣3<m<1,解得m=.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.考点:1.二次函数综合题;2.单动点问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.由实际问题列代数式;6.相似三角形的判定和性质;7.分类思想的应用.20、(1)图见解析,点A1坐标是(1,-4);(2)【分析】(1)据网格结构找出点A、B绕点O按照顺时针旋转90°后的对应点A1、B1的位置,然后顺次O、A1、B1连接即可,再根据平面直角坐标系写出A1点的坐标;(2)利用扇形的面积公式求解即可,利用网格结构可得出.【详解】(1)点A1坐标是(1,-4)(2)根据题意可得出:∴线段在旋转过程中扫过的扇形的面积为:.【点睛】本题考查的知识点是旋转变换以及扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21、(1)y=-x+2,y=;(2)AOB的面积为6;(3)(,).【详解】(1)将点(-2,4)、(4,-2)代入y1=ax+b,得,解得:,∴y=-x+2,将点(-2,4)代入y2=,得k=-8,∴y=;(2)在y=-x+2中,当y=0时,x=2,所以一次函数与x轴交点是(2,0),故△AOB的面积为=;(3)∵OA=OB=,∴△OAB是等腰三角形,∵△ABO与△BPO相似,∴△BPO也是等腰三角形,故只有一种情况,即P在OB的垂直平分线上,设P(x,-x+2)则,解得:,∴顶点P的坐标为(,).22、(1);(2)见解析.【分析】(1)根据直角三角形斜边的中线等于斜边的一半,可求得的长度,再根据勾股定理,可求得的长度.根据圆的直径对应的圆周角为直角,可知,根据等腰三角形的顶角平分线、底边上的中线、底边上的高重合,可求得的长.(2)根据三角形中位线平行于底边,可知,再根据,可知,则可知与相切.【详解】(1)连接、,,.为的斜边的中线,由于直角三角形斜边的中线等于斜边的一半,,,,为圆的直径.,即,由于等腰三角形的顶角平分线、底边上的中线、底边上的高重合,.(2)、为、的中点,由于三角形中位线平行于底边,,.,,即.又为半径与圆相切.【点睛】本题综合考查“直角三角形斜边中线等于斜边的一半”,“等腰三角形的顶角平分线、底边上的中线、底边上的高重合”,“三角形中位线平行于底边”等定律,以及圆的切线的判定定理.23、(1)A影院《我和我的祖国》的电影票为60元一张;(2)a的值为1.【分析】(1)设A影院《我和我的祖国》的电影票为x元一张,由5张影票的总价格为310得关于x的一元一次方程,求解即可;(2)当日A、B两个影院《我和我的祖国》的票房总收入为505200元,得关于a的方程,再设a%=t,得到关于t的一元二次方程,解得t,然后根据题意对t的值作出取舍,最后得a的值.【详解】解:(1)设A影院《我和我的祖国》的电影票为x元一张,由题意得:3x+2(x+5)=310∴3x+2x=300∴x=60答:A影院《我和我的祖国》的电影票为60元一张;(2)由题意得:60×4000+60(1﹣a%)×4000(1+2a%)=505200化简得:2400(1﹣a%)(1+2a%)=2652设a%=t,则方程可化为:2t2﹣t+0.105=0解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年户用光伏保险理赔率提升策略调研
- 2026年法律逻辑学考试真题附参考答案(b卷)
- 2026年家政服务培训分期付款利率调研
- 2026年法律逻辑学考试真题及完整答案【易错题】
- 2025广东广州市星海音乐学院开招聘15人(第三批)考试题库附答案
- 2025广东广州黄埔区云埔街道办事处面向社会招聘政府聘员、专职网格员及党建组织员15人(公共基础知识)测试题附答案
- 2025年信阳学院辅导员招聘备考题库附答案
- 2025年西南财经大学天府学院思想道德修养与法律基础期末考试模拟题附答案
- 古蔺县公务员考试试题及答案
- 古典名著《水浒传》填空题有答案
- 干细胞临床研究质量管理手册
- 2025年中考道德与法治考前冲刺复习:常考材料与答题术语模板
- 乡土中国血缘和地缘
- 2025福建高中春季高考学业水平考试数学测试卷
- DZT0181-1997水文测井工作规范
- DB375026-2022《居住建筑节能设计标准》
- 【深信服】PT1-AF认证考试复习题库(含答案)
- 腰椎间盘突出患者术后护理课件
- 语文小学二年级上册期末培优试卷测试题(带答案)
- 医院护理培训课件:《高压氧临床的适应症》
- 中山大学研究生因公临时出国境申报表
评论
0/150
提交评论