版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5
DynamicsofParticleMainContents§5.1Newton’sLawsofMotion§5.2DifferentialEquationsofmotionofaParticle
§5.3ThetwotypesofbasicproblemsofparticlekineticsKineticsofaParticle
Instatics,westudytheforceactingonabody,andstudytheproblemsofequilibriumofbodiesthatareactedonforces,butdon’tstudythemotionofabodyactedonunbalancedforces;Inkinematics,weonlystudythemotionofabodyfromthegeometricalaspects,anddonotaccountfortherelationsbetweenkinematicsofaparticleandtheforcethatactsontheparticle;Inkinetics,wewilldeterminetherelationsbetweenkinematicsofaparticleandtheforcethatactsontheparticle.Comparedwiththestaticsandkinematics,kineticsisthestudyofthemoregeneralruleofthemechanicalmotionofamaterialbody.Inkinetics,weusuallyusetwomodelsofmechanics:particleandparticles.Whentheshapeandsizeofabodyisnotsignificant;arigidbodywithtranslationalmotionmaybedefinedasaparticle,theparticleconcentrateallmassoftherigidbody,andlieinthecenterofmassoftherigidbody;Sometimes,thebodymaybemodeledasaparticle,andtherotationalmotionofthebodycanbeignored;Aparticle:aparticlehasamassbutnegligiblesizeandshape.Specifically,atwhatpointcanabodybeabstractedandsimplifiedasaparticle?Forexample,instudyingthemotionoftheeartharoundthesun,itispermissibletoconsidertheearthasaparticle.KineticsofaParticleAsystemofparticles:asystemcomposedoffiniteorinfiniteparticlescontactedeachother.Ifabodycannotbestudiedasaparticle,itmustbeaccountedasasystemofparticles.Theconceptofasystemofparticlesisveryuniversal,itincludesarigidbody,adeformablebody,andasystemcomposedofmanyparticlesandbodies.
KineticsofaParticle
Kineticscanbedividedintotwoparts:kineticsofaparticleandkineticsofasystemofparticles(includekineticsofrigidbodies).
Inthischapterwediscusskineticsofaparticle,thatistodeterminetherelationsbetweenkinematicsofaparticleandtheforcethatactsontheparticle.Asfundamentalsofothertheoryofkinetics,kineticsofaparticlebasedonthefundamentalsofNewton’sthreelaws.Thischapteremphasizehowtosolvethetwotypesofproblemsofparticlekineticsapplyingbasicequationsofkineticsandusingmethodsofdifferentialandintegralcalculus.KineticsofaParticle§5.1Newton’sLawsofMotionNewtonfirstlaw(inertialaw):
Intheabsenceofappliedforces,aparticleoriginallyatrestormovingwithconstantspeedinastraightlinewillremainatrestorcontinuetomovewithconstantspeedinastraightline.Inertia:apropertyofmatterbywhichitcontinuesinitsexistingstateofrestoruniformmotioninastraightline,unlessthatstateischangedbyanexternalforce.Therefore,thislawisalsocalledtheinertialaw.Newtonsecondlaw:Ifaparticleissubjectedtoaforce,theparticlewillbeaccelerated.Theaccelerationoftheparticlewillbeinthedirectionoftheforce,andthemagnitudeoftheaccelerationwillbeproportionaltothemagnitudeoftheforceandinverselyproportionaltothemassoftheparticle.Newtonsecondlawmaybeexpressedmathematicallyasfollows.§5.1Newton’sLawsofMotionorTheaboveformulaisthebasicequationforsolvingdynamicproblems,whichiscalledthebasicdynamicequation.Thisformuladiscribestherelationshipbetweenthemotionofaparticleandtheforcesactingontheparticle.
Newtonthirdlaw(thelawofactionandreaction):Foreveryaction,thereisanequalandoppositereaction;thatis,theforcesofinteractionbetweentwoparticlesareequalinmagnitudeandoppositeindirection,andcollinear.Itshouldbenotedthatthefirsttwolawsinthefundamentalequationsofdynamicsonlyapplyininertialcoordinates.Newtonthirdlawhasnothingtodowiththeselectionofcoordinatesystems,anditappliestoallcoordinatesystems.§5.1Newton’sLawsofMotionMechanicalsystemofunits
Inmechanics,weusuallyuseInternationalsystemofunits(SI).IntheSIsystem,allunitsaredividedintothreecategoriesbaseunits,derivedunitsandauxiliaryunits.ThebasedimensionsintheSIsystemaremass,lengthandtime,andthebaseunitsarekilogram(kg),meter(m)andsecond(s).Aunitofforceisderivedunits,beingcalledNewton(N).OneNewtonforcemakeonekilogramofmassgenerateonemeter/second2ofaccelerate,thatisRadianisanauxiliaryunit,canbeusedtoformderivedunits,forexampleangularvelocityunitandangularaccelerationunit,andsoon.§5.1Newton’sLawsofMotionInengineering,weoftenuseengineeringsystemofunits.Thebasedimensionsinengineeringsystemofunitsareforcelengthandtime,andthebaseunitsarekilogramforce(kgf),meter(m)andsecond(s).Massunitisderivedunits,whenonekilogramforcemakeabodygenerateonemeter/second2ofaccelerate,themassofthebodyisoneengineeringunitmass.Thatis§5.1Newton’sLawsofMotionWhenonekilogramforce(9.80665Newton)generateacceleration,themassis9.80665kilogram,hence1massofengineeringunitmass=9.80665kilogram≈9.8kilogramOnekilogramforce(kgf)isthegravityactingonabodythathasonekilogramofmassatalatitudeofofthesea.Hence§5.1Newton’sLawsofMotionThefundamentalequationsofmotionarerepresentedasequationsindifferentialform,knownasthedifferentialequationsofmotionofaparticle.1.VectorformWhenaparticlemovesinanarbitraryspatialcurve,itspositionisrepresentedbythevectordiameter
derivedfromanarbitraryspatialfixedpointO,asshowninthefigure.§5.2DifferentialEquationsofmotionofaParticle
2.Formsinrectangularcoordinates§5.2DifferentialEquationsofmotionofaParticle
3.Formsinpathn-tcoordinates§5.2DifferentialEquationsofmotionofaParticle
Applyingthedifferentialequationsofmotionofaparticlewecansolvetwotypesofproblemsofparticlekinetics.§5.3ThetwotypesofbasicproblemsofparticlekineticsThefirstbasicproblem:knowingthemotionofaparticle,todeterminetheforceactingontheparticle.Thatis,knowingequationsofmotionofaparticle,thesecondderivativewithrespecttotimeofthepositionvectoriscalledtheacceleration,whichissubstitutedintothefundamentalequationsofmotionofaparticle,weobtaintheforceactingontheparticle.Thesecondbasicproblem:knowingtheforceactingonaparticle,todeterminethemotionoftheparticle.(forexample,todeterminethevelocity,trajectoryandequationsofmotionofaparticleandsoon).Inthefundamentalequationsofmotionofaparticle,knowingtheforceactingonaparticle,wecanobtaintheaccelerationofthemotionoftheparticle,todeterminethevelocity,trajectory,equationsofmotionofaparticlebytheaccelerationistheintegralcalculationproblem。Example
5-1
§5.3ThetwotypesofbasicproblemsofparticlekineticsThefollowingexamplesarehowtosolvetwotypesofproblemsofparticlekineticsbyapplyingthedifferentialequationsofmotionofaparticle.,Example
5-1Solution:Firstly,choosetheparticleMastheobjectofstudy,theparticleMdoesplumb-rectilinearmotion,choosethetrajectorylineastherectangularcoordinateaxis,andthedownwarddirectionispositive.ThenputtheparticleMonthegeneralpositionofthemotiontodrawitsforcediagram.TheforcesontheparticleinthispositionaregravityPanddielectricresistanceR.ThenthedifferentialequationofmotionoftheparticleMinrectangularcoordinateiswherePxandRxaretheprojectionsofPandRontheOxaxis,respectively.wehave§5.3ThetwotypesofbasicproblemsofparticlekineticsFromtheknownequationofmotionofthemassExample
5-1ThedifferentialequationofmotioncanthenbewrittenasFromtheknownequationofmotionoftheparticlewegetso,therewas§5.3ThetwotypesofbasicproblemsofparticlekineticsExample
5-2Aparticleofmassmunderahorizontalforce
movesalongthehorizontallinefromrest.Determinetheequationofmotionoftheparticle.when
,aswellasThusgetting
Solution:Fortheproblem,forceisknown,andweneedtosolvemotion.Theforceisadiscontinuoustimefunction.Theobjectofstudyisaparticle,whichisrectilinearlymoving,andtheequationispresentedalongthedirectionofmotion.
§5.3ThetwotypesofbasicproblemsofparticlekineticsExample
5-2Thus,theequationofmotionoftheparticleiswhen
,thevelocityoftheparticle
,positionoftheparticle
thesearetheinitialconditionsat.when
,
,so
Fromtheinitialconditionsat
,ThusTheforceinthisproblemisadiscontinuousfunctionoftime,sotheanalysisshouldbesegmented,whilepayingattentiontotheinitialconditionsofeachsegment.§5.3ThetwotypesofbasicproblemsofparticlekineticsExample5-3
Solution:Taketheinitialpositionoftheobjectastheorigin,andbuildthecoordinatesystemalongthedirectionoftheobject'smotion.Motionanalysis:rectilinearmotion.
§5.3ThetwotypesofbasicproblemsofparticlekineticsEstablishdifferentialequationsofmotion:Example
5-3useSubstitutingintothedifferentialequationofmotionyieldsthusso
§5.3ThetwotypesofbasicproblemsofparticlekineticsthusExample
5-3Integrateoncemoreandget
soConsideringthatx=0att=0,wegetC3=9
§5.3ThetwotypesofbasicproblemsofparticlekineticsxyOABφβωExample
5-4Acrank-guidemechanismisshowninfigure.TheangularvelocityofthecrankOAisconstant,lengthOA=r,lengthoftheconnectingrodisAB=l.Ifλ=r/lissmaller,thepointOistheoriginofthecoordinatesystem,theequationofmotionofsliderBmaybewrittenapproximatelyasfollows:Themassofthesliderisdenotedbynotationm,
NeglectfrictionandthemassoftheconnectingrodAB,whenand,respectively,determinetheforceactingattheconnectingrodAB.§5.3ThetwotypesofbasicproblemsofparticlekineticsxBβxyOABφβωExample
5-4SoSolution:ConsideringthesliderB.Whenφ=ωt,thefree-bodydiagram(FBD)ofthesliderBshowninfigure,wheretherod(AB)istwoforcemember.Writingtheequationofmoti
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物临床试验中的应用案例
- 生物制品降解机制与稳定性试验关联研究
- 生物制剂在难治性儿童哮喘中的选择
- 生物制剂临床试验中受试者依从性提升方案
- 深度解析(2026)《GBT 20564.3-2017汽车用高强度冷连轧钢板及钢带 第3部分 高强度无间隙原子钢》
- 油气管网战略规划部总经理管理能力测试题含答案
- 教育行业教育咨询师面试题
- 快递员服务面试题及答案
- 深度解析(2026)《GBT 19369-2003草皮生产技术规程》
- 深度解析(2026)《GBT 19356-2003热喷涂 粉末 成分和供货技术条件》
- T-CEPPEA 5002-2019 电力建设项目工程总承包管理规范
- 糖尿病诊疗的指南
- 2025年高考语文复习之文言文阅读(全国)12 选择性必修下教材文言文挖空练习+重要知识点归类(含答案)
- 房屋出租安全免责协议书
- 2024《整治形式主义为基层减负若干规定》全文课件
- 2024年建筑继续教育-建筑八大员(九大员)继续教育笔试历年真题荟萃含答案
- 慢性中耳炎教学查房
- (2023年基价)井巷工程消耗量定额说明
- 放射医学技术职称考试 《相关专业知识》篇 考点汇总
- 地铁资料城市轨道交通设备系统控制中心
- 企业数字化转型发言稿
评论
0/150
提交评论