2022-2023学年北京朝阳人大附朝阳分校九年级数学第一学期期末监测模拟试题含解析_第1页
2022-2023学年北京朝阳人大附朝阳分校九年级数学第一学期期末监测模拟试题含解析_第2页
2022-2023学年北京朝阳人大附朝阳分校九年级数学第一学期期末监测模拟试题含解析_第3页
2022-2023学年北京朝阳人大附朝阳分校九年级数学第一学期期末监测模拟试题含解析_第4页
2022-2023学年北京朝阳人大附朝阳分校九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%2.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米 B.800tanα米 C.米 D.米3.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.﹣4ac>0 D.a+b+c<04.如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:55.若二次函数y=-x2+px+q的图像经过A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y16.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a27.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,且点B的坐标为(6,4),如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)8.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A. B. C. D.9.已知关于X的方程x2+bx+a=0有一个根是-a(a0),则a-b的值为()A.1 B.2 C.-1 D.010.下列二次根式能与合并的是()A. B. C. D.11.如图,在中,.将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为()A. B.C. D.12.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)二、填空题(每题4分,共24分)13.二次函数的图象与y轴的交点坐标是__.14.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.15.如图,用长的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是___________.(中间横框所占的面积忽略不计)16.如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=____.17.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.18.在一个不透明的布袋中装有红色和白色两种颜色的小球(除颜色以外没有任何区别),随机摸出一球,摸到红球的概率是,其中白球6个,则红球有________个.三、解答题(共78分)19.(8分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球B:乒乓球C:羽毛球D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)20.(8分)如图1,抛物线y=ax2+bx-3经过A、B、C三点,己知点A(-3,0)、C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB下方的抛物线上一动点(不与A、B重合).①过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;②如图2,连接AP,以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物线对称轴上时,求出对应的P点的坐标.21.(8分)(1)解方程:.(2)已知:关于x的方程①求证:方程有两个不相等的实数根;②若方程的一个根是,求另一个根及k值.22.(10分)某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,,,车杆与所成的,图1中、、三点共线,图2中的座板与地面保持平行.问变形前后两轴心的长度有没有发生变化?若不变,请写出的长度;若变化,请求出变化量?(参考数据:,,)23.(10分)某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?24.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)25.(12分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.(1)在方格纸中画出以为一边的锐角等腰三角形,点在小正方形的顶点上,且的面积为;(2)在方格纸中画出以为一边的直角三角形,点在小正方形的顶点上,且的面积为5;(3)连接,请直接写出线段的长.26.如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,(1)试证明:△AEP∽△ABC;(2)求y与x之间的函数关系式.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3、D【解析】试题分析:根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.考点:二次函数图象与系数的关系4、D【解析】过点D作DF∥CA交BE于F,如图,利用平行线分线段成比例定理,由DF∥CE得到==,则CE=DF,由DF∥AE得到==,则AE=4DF,然后计算的值.【详解】如图,过点D作DF∥CA交BE于F,∵DF∥CE,∴=,而BD:DC=2:3,BC=BD+CD,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴=,故选D.【点睛】本题考查了平行线分线段成比例、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,熟练掌握相关知识是解题的关键.5、A【分析】利用A点与C点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B、D、E离对称轴的远近求解.【详解】∵二次函数y=-x2+px+q的图像经过A(,n)、C(,n),

∴抛物线开口向下,对称轴为直线,∵点D(,y2)的横坐标:,离对称轴距离为,点E(,y3)的横坐标:,离对称轴距离为,∴B(0,y1)离对称轴最近,点E离对称轴最远,∴y3<y2<y1.

故选:A.【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.6、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.7、D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的,

∴两矩形面积的相似比为:1:2,

∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(-3,-2).

故选:D.【点睛】此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.8、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.9、C【解析】由一元二次方程的根与系数的关系x1•x2=、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b的值即可.【详解】∵关于x的方程x2+bx+a=0的一个根是-a(a≠0),

∴x1•(-a)=a,即x1=-1,把x1=-1代入原方程,得:

1-b+a=0,

∴a-b=-1.

故选C.【点睛】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.10、C【分析】化为最简二次根式,然后根据同类二次根式的定义解答.【详解】解:的被开方数是3,而=、=2、是最简二次根式,不能再化简,以上三数的被开方数分别是2、2、15,所以它们不是同类二次根式,不能合并,即选项A、B、D都不符合题意,=2的被开方数是3,与是同类二次根式,能合并,即选项C符合题意.故选:C.【点睛】本题考查同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.11、C【解析】试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选C.考点:1.旋转的性质2.含30度角的直角三角形.12、B【解析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.二、填空题(每题4分,共24分)13、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.14、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.15、【分析】设窗的高度为xm,宽为m,根据矩形面积公式列出二次函数求函数值的最大值即可.【详解】解:设窗的高度为xm,宽为.所以,即,当x=2m时,S最大值为.故答案为:.【点睛】本题考查二次函数的应用.能熟练将二次函数化为顶点式,并据此求出函数的最值是解决此题的关键.16、或【分析】分两种情形:如图1中,当时.如图2中,当时,分别求解即可.【详解】解:在中,,,,,,,∴,∴.若△CEG是直角三角形,有两种情况:I.如图1中,当时.∴,作于.则,在中,,,.II.如图2中,当时,∵,∴,∴,∴,此时点与点重合,∴,∴,∴,综上所述,的长为或.故答案为:或.【点睛】本题考查了翻折变换,直角三角形性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,

在Rt△ABC中,BC==5,

∵AD是三角形的角平分线,

∴DC=DE,

∵S△ACD+S△ABD=S△ABC,

∴×5,

∴DE=1,

即点D到直线AB的距离等于1.

故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.18、1【分析】设红球有x个,根据题意列出方程,解方程并检验即可.【详解】解:设红球有x个,由题意得:,解得,经检验,是原分式方程的解,所以,红球有1个,故答案为:1.【点睛】本题主要考查根据概率求数量,掌握概率的求法是解题的关键.三、解答题(共78分)19、解:(1)1.(2)补全图形,如图所示:(3)列表如下:

﹣﹣﹣

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

﹣﹣﹣

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

﹣﹣﹣

(丁,丙)

(甲,丁)

(乙,丁)

(丙,丁)

﹣﹣﹣

∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为.【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.20、(1)y=x2+2x﹣3;(2)①(﹣,),②(﹣-1,2)或(,)或(-1,-4)【分析】(1)直接用待定系数法求解即可;(2)①由抛物线解析式y=x2+2x﹣3,令x=0,y=﹣3,求出点B(0,-3),设直线AB的解析式为y=kx+b,把A(﹣3,0)和B(0,﹣3)代入y=kx+b求出k=-1,b=-3,直线AB的解析式为y=﹣x﹣3,设E(x,﹣x﹣3),则PE=﹣(x+)2+,从而得当PE最大时,P点坐标为(﹣,);②抛物线对称轴为直线x=﹣1,A(﹣3,0),正方形APMN的顶点落在抛物线对称轴上的情况有两种情况,i)当点N在抛物线对称轴直线x=﹣1上;ii)当点M在抛物线对称轴直线x=﹣1;根据这两种情况,作出图形,找到线段之间的等量关系,解之即可..【详解】(1)把A(﹣3,0)和C(1,0)代入y=ax2+bx﹣3得,,解得,∴抛物线解析式为y=x2+2x﹣3;(2)设P(x,x2+2x﹣3),直线AB的解析式为y=kx+b,①由抛物线解析式y=x2+2x﹣3,令x=0,y=﹣3,∴B(0,﹣3),把A(﹣3,0)和B(0,﹣3)代入y=kx+b得,解得,∴直线AB的解析式为y=﹣x﹣3,∵PE⊥x轴,∴E(x,﹣x﹣3),∵P在直线AB下方,∴PE=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,当x=﹣时,y=x2+2x﹣3=,∴当PE最大时,P点坐标为(﹣,).②抛物线对称轴为直线x=﹣1,A(﹣3,0),正方形APMN的顶点落在抛物线对称轴上的情况有三种:i)当点N在抛物线对称轴直线x=﹣1上时,作PR⊥x轴于点R,设对称轴与x轴的交点为L,如图①,∵四边形APMN为正方形,∴AN=AP,∠PAR+∠RAN=90°,∵∠PAR+∠APR=90°,∴∠APR=∠RAN,在△APR和△NAL中∴△APR≌△NAL(AAS),∴PR=AL,∵AL=﹣1-(﹣3)=2,∴PR=2,此时x2+2x﹣3=2,解得x1=-1,x2=﹣-1,∵P在直线AB下方,∴x=﹣-1,∴P(﹣-1,2);ii)当点M在抛物线对称轴直线x=﹣1上时,如图②,过点P作PH⊥对称轴于点H、作AG⊥HP于点G,∵四边形APMN为正方形,∴PA=PM,∠APM=90°,∴∠APG+∠MPH=90°,∵∠APG+∠GAP=90°,∴∠GAP=∠HPM,在△APG和△PMH中∴△APG≌△PMH(AAS),∴AG=PH,PG=MH,∴GH=PG+PH∵P(x,x2+2x-3)∴x+3+(-x2-2x+3)=2,解得x1=,x2=,∵P在直线AB下方,∴x=,∴P(,)ⅲ)当点P在抛物线对称轴直线x=-1.上时,P(-1,-4),终上所述,点P对应的坐标为(﹣-1,2)或(,)或(-1,-4).【点睛】本题考查了待定系数法求一次函数与二次函数解析式、配方法求二次函数最值、全等三角形的判定与性质等知识点,有一定综合性,难度适中.第(3)问的两种情况当中,根据图形,构造全等三角形是关键.21、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,【分析】(1)把方程x1﹣3x+1=0进行因式分解,变为(x﹣1)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;

(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有两个不相等的实数根;

②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【详解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①证明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)1﹣k﹣1=0,解得:k=﹣1,则原方程为:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一个根为1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a,b,c是常数且a≠0)的根的判别式及根与系数的关系;根判别式△=b1−4ac:(1)当△>0时,一元二次方程有两个不相等的实数根;(1)当△=0时,一元二次方程有两个相等的实数根;(3)当△<0时,一元二次方程没有实数根;若x1,x1为一元二次方程的两根时,x1+x1=,x1∙x1=.22、的长度发生了改变,减少了.【分析】根据图形的特点构造直角三角形利用三角函数求出变化前BC与变化后的BC长度即可求解.【详解】图1:作DF⊥BC于F点,∵∴BF=EF=BDcos≈30×=18∴BC=2BF+CE图2:作DF⊥BC于F点,由图1可知∠DE’F=53°,∴∠DE’C=180°-∠DE’F=127°∵DE∥BC,∴∠E’DE=∠DE’F=53°根据题意可知DE’=DE,CE’=CE,连接CD,∴△DCE≌△DCE’∴∠DEC=∠DE’C=127°∴∠ECB=360°-∠DEC-∠DE’C-∠E’DE=53°,作EG⊥BC于G点∴BC=BF+FG+GC=BDcos+DE+CE∠ECB30×+30+40×=76-72=4cm,答:的长度发生了改变,减少了.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的运用.23、(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x元,台灯将少售出10x,那么利润为(40+x-30)(600-10x)=10000,解方程即可;

(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【详解】解:(1)设这种台灯上涨了元,依题意得:,化简得:,解得:(不合题意,舍去)或,售价:(元)答:这种台灯的售价应定为50元.(2)设台灯上涨了元,利润为元,依题意:∴对称轴,在对称轴的左侧随着的增大而增大,∵单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论