湖北襄阳宜城市朱市镇第二中学2025届九年级数学第一学期期末复习检测模拟试题含解析_第1页
湖北襄阳宜城市朱市镇第二中学2025届九年级数学第一学期期末复习检测模拟试题含解析_第2页
湖北襄阳宜城市朱市镇第二中学2025届九年级数学第一学期期末复习检测模拟试题含解析_第3页
湖北襄阳宜城市朱市镇第二中学2025届九年级数学第一学期期末复习检测模拟试题含解析_第4页
湖北襄阳宜城市朱市镇第二中学2025届九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北襄阳宜城市朱市镇第二中学2025届九年级数学第一学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.的相反数是()A. B. C. D.2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()A. B. C. D.3.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.4.已有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎 B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎 D.甲、乙、丙都说谎5.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A. B. C. D.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同7.若反比例函数y=的图象位于第二、四象限,则k的取值可以是()A.0 B.1 C.2 D.以上都不是8.如图,一斜坡AB的长为m,坡度为1:1.5,则该斜坡的铅直高度BC的高为()A.3m B.4m C.6m D.16m9.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.10.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k< B.k<﹣ C.k<3 D.k>﹣311.用配方法解一元二次方程,变形后的结果正确的是()A. B. C. D.12.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20° B.35° C.40° D.55°二、填空题(每题4分,共24分)13.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.14.在二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x-2-101234y72-1-2m27则m的值为_____.15.二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1、A、A、…、A在y轴的正半轴上,点B、B、B、…、B在二次函数y=x2位于第一象限的图象上,若△A0B1A1、△A1B2A2、△A2B3A3、…、△A2017B2018A2018都为等边三角形,则△ABA的边长=____________.16.如果一个直角三角形的两条边的长度分别是3cm和4cm,那么这个直角三角形的第三边的长度是____________.17.如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为___________.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为_____.三、解答题(共78分)19.(8分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”.(1)如图1,已知、是⊙上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;(2)如图2,是等边三角形,,以点为圆心,的半径为1画圆,为边上的一动点,过点作的一条切线,切点为,求的最小值;(3)如图3,在平面直角坐标系中,⊙的半径为1,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标.20.(8分)如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=,求直线AB对应的函数表达式.21.(8分)如图,△ABC的三个顶点在平面直角坐标系中的坐标分别为A(3,3),B(2,1),C(5,1),将△ABC绕点O逆时针旋转180°得△A′B′C′,请你在平面直角坐标系中画出△A′B′C′,并写出△A′B′C′的顶点坐标.22.(10分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.23.(10分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.24.(10分)抛物线的顶点为,且过点,求它的函数解析式.25.(12分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=2,求⊙O的半径.26.某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中部分所对应的扇形圆心角度数;(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.

参考答案一、选择题(每题4分,共48分)1、D【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.2、B【分析】用黄色小球的个数除以总个数可得.【详解】解:搅匀后任意摸出一个球,是黄球的概率为故答案为B.【点睛】本题考查了概率公式,解答的关键在于确定发生事件的总发生数和所求事件发生数.3、B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率.【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=.故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.4、B【分析】分情况,依次推理可得.【详解】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查推理能力,关键在于假设法,推出矛盾是否即可判断对错.5、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.6、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.7、A【详解】∵反比例函数y=的图象位于第二、四象限,∴k﹣1<0,即k<1.故选A.8、B【分析】首先根据题意作出图形,然后根据坡度=1:1.5,可得到BC和AC之间的倍数关系式,设BC=x,则AC=1.5x,再由勾股定理求得AB=,从而求得BC的值.【详解】解:∵斜坡AB的坡度i=BC:AC=1:1.5,AB=,

∴设BC=x,则AC=1.5x,∴由勾股定理得AB=,又∵AB=,∴=,解得:x=4,∴BC=4m.故选:B.【点睛】本题考查坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解题关键.9、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.10、A【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.11、B【解析】根据配方法解一元二次方程即可求解.【详解】,∴,∴,故选:B.【点睛】本题考查了配方法解一元二次方程,解决本题的关键是方程两边同时加上一次项系数一半的平方.12、A【解析】试题解析:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°.故选A.二、填空题(每题4分,共24分)13、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:

红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.

故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14、-1【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【详解】解:根据图表可以得到,点(-2,7)与(4,7)是对称点,点(-1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,-1)是对称点,∴m=-1.【点睛】正确观察表格,能够得到函数的对称轴,联想到对称关系是解题的关键.15、1【分析】分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=a,BB2=b,CB3=c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y=x2中,求a、b、c的值,得出规律.【详解】解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,

设A0A1=a,A1A2=b,A2A3=c,则AB1=a,BB2=b,CB3=c,在正△A0B1A1中,B1(a,),

代入y=x2中,得=×a2,解得a=1,即A0A1=1,

在正△A1B2A2中,B2(b,1+),

代入y=x2中,得1+=×b2,解得b=2,即A1A2=2,

在正△A2B3A3中,B3(c,3+),

代入y=x2中,得3+=×c2,解得c=3,即A2A3=3,

依此类推由此可得△A2017B1A1的边长=1,

故答案为:1.【点睛】本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.16、5cm或cm【分析】分两种情况:当4cm为直角边时,利用勾股定理求出第三边;当4cm为斜边时,利用勾股定理求出第三边.【详解】∵该三角形是直角三角形,∴①当4cm为直角边时,第三边长为cm;②当4cm为斜边时,第三边长为cm,故答案为:5cm或cm.【点睛】此题考查勾股定理,题中没有确定已知的两条边长是直角边或是斜边,故应分情况讨论,避免漏解.17、【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【详解】解:由题意可得出:∠BDC=45°,∠DA′E=90°,

∴∠DEA′=45°,

∴A′D=A′E,

∵在正方形ABCD中,AD=1,

∴AB=A′B=1,

∴BD=,

∴A′D=,

∴在Rt△DA′E中,DE=.故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.18、②③.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】由图象可知,抛物线开口向下,a<0,对称轴在y轴右侧,a、b异号,b>0,与y轴交于正半轴,c>0,所以abc<0,因此①是错误的;当y=0时,抛物线与x轴交点的横坐标就是ax2+bx+c=0的两根,由图象可得x1=﹣1,x2=3;因此②正确;对称轴为x=1,即﹣=1,也就是2a+b=0;因此③正确,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是错误的,故答案为:②③.【点睛】此题考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.三、解答题(共78分)19、(1)见解析;(2);(1)或【分析】(1)连接AO并且延长交圆于,连接AO并且延长交圆于,即可求解;

(2)根据MN为⊙的切线,应用勾股定理得,所以OM最小时,MN最小;根据垂线段最短,得到当M和BC中点重合时,OM最小为,此时根据勾股定理求解DE,DE和MN重合,即为所求;

(1)根据“智慧三角形”的定义可得为直角三角形,根据题意可得一条直角边为1,当写斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为1,根据勾股定理可求得另一条直角边,再根据三角形面积可求得斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【详解】(1)如图1,点和均为所求理由:连接、并延长,分别交于点、,连接、,∵是的直径,∴,∴是“智慧三角形”同理可得,也是“智慧三角形”(2)∵是的切线,∴,∴,∴当最小时,最小,即当时,取得最小值,如图2,作于点,过点作的一条切线,切点为,连接,∵是等边三角形,,∴,,∴,∵是的一条切线,∴,,∴,当点与重合时,与重合,此时.(1)由“智慧三角形”的定义可得为直角三角形,根据题意,得一条直角边.∴当最小时,的面积最小,即最小时.如图1,由垂线段最短,可得的最小值为1.∴.过作轴,∵,∴.在中,,故符合要求的点坐标为或.【点睛】本题考查了圆与勾股定理的综合应用,掌握圆的相关知识,熟练应用勾股定理,明确“智慧三角形”的定义是解题的关键.20、(1)见解析;(2)【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直线AB是⊙O的切线;(2)解:∵∠ABO=90°,,OB=1,∴,∴点A坐标为(2,0),∵△OAB∽△CAO,∴,即,∴,∴点C坐标为;设直线AB对应的函数表达式为y=kx+b,则,∴∴.即直线AB对应的函数表达式为.【点睛】本题考查相似三角形的判定及性质、圆的切线定理、勾股定理、一次函数解析式等知识,解题的关键是正确理解题意,求出线段的长及各点的坐标.21、A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).【解析】试题分析:由于△ABC绕点O逆时针旋转180°得△A′B′C′,则△ABC和△A′B′C′关于原点中心对称,然后根据关于原点对称的点的坐标特征写出A′点、B′点、C′点的坐标,再描点即可.解:如图,△A′B′C′为所作,A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).考点:作图-旋转变换.22、(1)证明见解析;(2)1.【解析】试题分析:(1)、连接DO,根据平行线的性质得出∠DAO=∠COB,∠ADO=∠COD,结合OA=OD得出∠COD=∠COB,从而得出△COD和△COB全等,从而得出切线;(2)、设⊙O的半径为R,则OD=R,OE=R+1,根据Rt△ODE的勾股定理求出R的值得出答案.试题解析:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为R,则OD=R,OE=R+1,∵CD是⊙O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半径为1.23、(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+1-1-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.24、【分析】已知抛物线的顶点,故可设顶点式,由顶点可知,将点代入即可.【详解】解:设将点代入得解得所以【点睛】本题考查了抛物线的解析式,由题中所给点的特征选择合适的抛物线的解析式的设法是解题的关键.25、(1)见解析;(2).【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论