2022年广东省广州市海珠区数学九年级第一学期期末联考试题含解析_第1页
2022年广东省广州市海珠区数学九年级第一学期期末联考试题含解析_第2页
2022年广东省广州市海珠区数学九年级第一学期期末联考试题含解析_第3页
2022年广东省广州市海珠区数学九年级第一学期期末联考试题含解析_第4页
2022年广东省广州市海珠区数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图⊙O的半径为5,弦心距,则弦的长是()A.4 B.6 C.8 D.52.如图,的半径为3,是的弦,直径,,则的长为()A. B. C. D.3.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2 B. C. D.4.已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A.<< B.<< C.<< D.无法确定5.用配方法解一元二次方程,变形后的结果正确的是()A. B. C. D.6.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将1010减去它的,再减去余下的,再减去余下的,再减去余下的,……,依此类推,直到最后减去余下的,最后的结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x、y,多项式的值不小于1.其中正确的个数是()A.1 B.1 C.3 D.47.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是()A.3 B.4 C.5 D.68.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30 B.30﹣30 C.30 D.309.圆锥的底面半径是,母线为,则它的侧面积是()A. B. C. D.10.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.2二、填空题(每小题3分,共24分)11.若函数为关于的二次函数,则的值为__________.12.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为___.13.如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为_____.14.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.15.如图,中,,,,__________.16.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是_____.17.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________18.如图,将放在边长为1的小正方形组成的网格中,若点A,O,B都在格点上,则___________________.三、解答题(共66分)19.(10分)在锐角三角形中,已知,,的面积为,求的余弦值.20.(6分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.21.(6分)如图,反比例函数y1=与一次函数y2=ax+b的图象交于点A(﹣2,5)和点B(n,l).(1)求反比例函数和一次函数的表达式;(2)请结合图象直接写出当y1≥y2时自变量x的取值范围;(3)点P是y轴上的一个动点,若S△APB=8,求点P的坐标.22.(8分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数(x0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.23.(8分)如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,≈1.73,≈1.41)24.(8分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.25.(10分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数随时间()变化的函数图象如图所示(越大表示注意力越集中).当时,图象是抛物线的一部分,当和时,图象是线段.(1)当时,求注意力指标数与时间的函数关系式.(2)一道数学综合题,需要讲解24,问老师能否安排,使学生听这道题时,注意力的指标数都不低于1.26.(10分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)

参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:连接OA,在直角三角形OAC中,OC=3,OA=5,则可求出AC,再根据垂径定理即可求出AB.解:连接OA,如下图所示:∵在直角三角形OAC中,OA=5,弦心距,∴AC=,又∵OC⊥AB,∴AB=2AC=2×4=1.故选A.2、C【分析】连接OC,利用垂径定理以及圆心角与圆周角的关系求出;再利用弧长公式即可求出的长.【详解】解:连接OC(同弧所对的圆心角是圆周角的2倍)∵直径∴=(垂径定理)∴故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.3、D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故答案选:D.【点睛】本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.4、B【分析】直接根据反比例函数的性质排除选项即可.【详解】因为点A(,),B(1,),C(2,)是函数图象上的三点,,反比例函数的图像在二、四象限,所以在每一象限内y随x的的增大而增大,即;故选B.【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.5、B【解析】根据配方法解一元二次方程即可求解.【详解】,∴,∴,故选:B.【点睛】本题考查了配方法解一元二次方程,解决本题的关键是方程两边同时加上一次项系数一半的平方.6、C【分析】画图可判断①;将②转化为算式的形式,求解判断;③是用频率估计概率的考查;④中配成平方的形式分析可得.【详解】如下图,∠1=∠1,∠1+∠3=180°,即两边都平行的角,可能相等,也可能互补,①错误;②可用算式表示为:,正确;实验次数越多,则频率越接近概率,③正确;∵≥0,≥0∴≥1,④正确故选:C【点睛】本题考查平行的性质、有理数的计算、频率与概率的关系、利用配方法求最值问题,注意②中,我们要将题干文字转化为算式分析.7、B【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=1.故选:B.【点睛】此题主要考查根据三角形中线性质求解面积,熟练掌握,即可解题.8、B【分析】在Rt△BCD中,解直角三角形,可求得CD的长,即求得甲的高度,过A作AF⊥CD于点F,在Rt△ADF中解直角三角形可求得DF,则可求得CF的长,即可求得乙的高度.【详解】解:如图,过A作AF⊥CD于点F,

在Rt△BCD中,∠DBC=60°,BC=30m,

∵tan∠DBC=,

∴CD=BC•tan60°=30m,

∴甲建筑物的高度为30m;

在Rt△AFD中,∠DAF=45°,

∴DF=AF=BC=30m,

∴AB=CF=CD-DF=(30-30)m,

∴乙建筑物的高度为(30-30)m.

故选B.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.9、A【分析】根据圆锥的侧面积=底面周长×母线长计算.【详解】圆锥的侧面面积=×6×5=15cm1.故选:A.【点睛】本题考查圆锥的侧面积=底面周长×母线长,解题的关键是熟知公式的运用.10、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题(每小题3分,共24分)11、2【分析】根据二次函数的定义,列出关于m的方程和不等式,即可求解.【详解】∵函数为关于的二次函数,∴且,∴m=2.故答案是:2.【点睛】本题主要考查二次函数的定义,列出关于m的方程和不等式,是解题的关键.12、1.【分析】过A作AE⊥y轴于E过B作BF⊥y轴于F,通过△AOE∽△BOF,得到,设,于是得到AE=-m,,从而得到,,于是求得结果.【详解】解:过作轴于过作轴于,,,,,,,,设,,,,,,.故答案为1.【点睛】此题考查相似三角形的判定与性质,反比例函数图象上点的坐标特征,解题关键在于作辅助线和利用三角函数进行解答.13、【分析】矩形ABCD的两条边AB=1,AD=,得到∠DBC=30°,由旋转的性质得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,连接CE,根据全等三角形的性质得到∠BCE=∠BCD=90°,推出D,C,E三点共线,得到CE=CD=1,根据三角形和扇形的面积公式即可得到结论.【详解】∵矩形ABCD的两条边AB=1,AD=,∴,∴∠DBC=30°,∵将对角线BD顺时针旋转60°得到线段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,连接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三点共线,∴CE=CD=1,∴图中阴影部分面积=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.14、1【分析】过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.【详解】解:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,∵S△ADE=AD×EG=3,AD=2,∴EG=3,则CF=EG=3,依题意得四边形ABFD为矩形,∴BF=AD=2,∴BC=BF+CF=2+3=1.故答案为1.15、18【分析】根据勾股定理和三角形面积公式得,再通过完全平方公式可得.【详解】因为中,,,,所以所以所以=64+36=100所以AB+BC=10所以AC+AB+BC=8+10=18故答案为:18【点睛】考核知识点:勾股定理.灵活根据完全平方公式进行变形是关键.16、(1,2).【分析】根据题目中抛物线的解析式,可以直接写出该抛物线的顶点坐标.【详解】解:∵抛物线y=﹣(x﹣1)2+2,∴该抛物线的顶点坐标为(1,2),故答案为:(1,2).【点睛】本题主要考查抛物线的顶点坐标,掌握抛物线的顶点坐标的形式是解题的关键.17、【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,∴△AEF和△ABG为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴边长为.故答案为:.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.18、2【分析】利用网格特征,将∠AOB放到Rt△AOD中,根据正切函数的定理即可求出tan∠AOB的值.【详解】如图,将∠AOB放到Rt△AOD中,∵AD=2,OD=1∴tan∠AOB=故答案为:2.【点睛】本题考查在网格图中求正切值,利用网格的特征将将∠AOB放到直角三角形中是解题的关键.三、解答题(共66分)19、【分析】由三角形面积和边长可求出对应边的高,再由勾股定理求出余弦所需要的边长即可解答.【详解】解:过点点作于点,∵的面积,∴,在中,由勾股定理得,所以【点睛】本题考查了解直角三角形,掌握余弦的定义(余弦=邻边:斜边)和用面积求高是解题的关键.20、(1)点A在该反比例函数的图像上,见解析;(2)Q的横坐标是;(3)见解析.【分析】(1)连接PC,过点P作轴于点H,由此可求得点P的坐标为(2,);即可求得反比例函数的解析式为,连接AC,过点B作于点C,求得点A的坐标,由此即可判定点A是否在该反比例函数的图象上;(2)过点Q作轴于点M,设,则,由此可得点Q的坐标为,根据反比例函数图象上点的性质可得,解方程球队的b值,即可求得点Q的横坐标;(3)连接AP,,,结合(1)中的条件,将正六边形ABCDEF先向右平移1个单位,再向上平移个单位(平移后的点B、C在反比例函数的图象上)或将正六边形ABCDEF向左平移2个单位(平移后的点E、F在反比例函数的图象上).【详解】解:(1)连接PC,过点P作轴于点H,在正六边形ABCDEF中,点B在y轴上和都是含有角的直角三角形,,点P的坐标为反比例函数的表达式为连接AC,过点B作于点C,,点A的坐标为当时,所以点A在该反比例函数的图像上(2)过点Q作轴于点M六边形ABCDEF是正六边形,设,则点Q的坐标为解得,点Q的横坐标是(3)连接AP,,平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移个单位,或将正六边形ABCDEF向左平移2个单位【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标相结合是解决问题的关系.21、(1)y1=﹣,y2=x+6;(2)x≤﹣10或﹣2≤x<0;(3)点P的坐标为(0,4)或(0,1).【分析】(1)先把A点坐标代入y=中求出k得到反比例函数解析式为y=﹣,再利用反比例函数解析式确定B(﹣10,1),然后利用待定系数法求一次解析式;(2)根据图象即可求得;(3)设一次函数图象与y轴的交点为Q,易得Q(0,6),设P(0,m),利用三角形面积公式,利用S△APB=S△BPQ﹣S△APQ得到|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到点P的坐标.【详解】解:(1)把A(﹣2,5)代入反比例函数y1=得k=﹣2×5=﹣10,∴反比例函数解析式为y1=﹣,把B(n,1)代入y1=﹣得n=﹣10,则B(﹣10,1),把A(﹣2,5)、B(﹣10,1)代入y2=ax+b得,解得,∴一次函数解析式为y2=x+6;(2)由图象可知,y1≥y2时自变量x的取值范围是x≤﹣10或﹣2≤x<0;(3)设y=x+6与y轴的交点为Q,易得Q(0,6),设P(0,m),∴S△APB=S△BPQ﹣S△APQ=1,|m﹣6|×(10﹣2)=1,解得m1=4,m2=1.∴点P的坐标为(0,4)或(0,1).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22、(1)见解析;(2);(3),P点坐标为或【分析】(1)由角平分线求出∠MOP=∠NOP=∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OMsinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;综上所述:点P的坐标为:或.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.23、(1)坡AB的高BT为50米;(2)建筑物高度为89米【解析】试题分析:(1)根据坡AB的坡比为1:2.4,可得tan∠BAT=,可设TB=h,则AT=2.4h,由勾股定理可得,即可求解,(2)作DK⊥MN于K,作DL⊥CH于L,在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD=,易知四边形DLHK是矩形,则LH=DK,LD=HK,在△ACH中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论