2022年广西柳州市柳林中学数学九年级第一学期期末质量跟踪监视试题含解析_第1页
2022年广西柳州市柳林中学数学九年级第一学期期末质量跟踪监视试题含解析_第2页
2022年广西柳州市柳林中学数学九年级第一学期期末质量跟踪监视试题含解析_第3页
2022年广西柳州市柳林中学数学九年级第一学期期末质量跟踪监视试题含解析_第4页
2022年广西柳州市柳林中学数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个圆锥的底面直径是8cm,母线长为9cm,则圆锥的全面积为()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm22.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣23.下列事件是必然事件的是()A.3个人分成两组,并且每组必有人,一定有2个人分在一组B.抛一枚硬币,正面朝上C.随意掷两个均匀的骰子,朝上面的点数之和为6D.打开电视,正在播放动画片4.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为()A. B. C. D.5.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是()A.4π B.1π C.π D.2π6.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.7.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50° B.60° C.65° D.75°8.如果一个正多边形的中心角为60°,那么这个正多边形的边数是()A.4 B.5 C.6 D.79.已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是A.①②③ B.②③④ C.①③④ D.①②④10.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑦个图形中五角星的个数为()A.90 B.94 C.98 D.10211.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.12.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.6二、填空题(每题4分,共24分)13.如上图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为______.14.在△ABC中,∠C=90°,BC=2,,则边AC的长是.15.设分别为一元二次方程的两个实数根,则____.16.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为______.17.如果等腰△ABC中,,,那么______.18.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.三、解答题(共78分)19.(8分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?20.(8分)已知,二次函数的图象,如图所示,解决下列问题:(1)关于的一元二次方程的解为;(2)求出抛物线的解析式;(3)为何值时.21.(8分)(x2+y22.(10分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.23.(10分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.24.(10分)已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.25.(12分)一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?26.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角为,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角为,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.

参考答案一、选择题(每题4分,共48分)1、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和.【详解】解:圆锥的全面积=π×42+×2π×4×9=52π(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2、D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.3、A【分析】根据必然事件是指在一定条件下,一定发生的事件,对每一选项判断即可.【详解】解:A、3个人分成两组,并且每组必有人,一定有2个人分在一组是必然事件,符合题意,故选A;B、抛一枚硬币,正面朝上是随机事件,故不符合题意,B选项错误;C、随意掷两个均匀的骰子,朝上面的点数之和为6是随机事件,故不符合题意,C选项错误;D、打开电视,正在播放动画片是随机事件,故不符合题意,D选项错误;故答案选择D.【点睛】本题考查的是事件的分类,事件分为必然事件,随机事件和不可能事件,掌握概念是解题的关键.4、A【分析】列举出所有情况,看两位数中是奇数的情况占总情况的多少即可.【详解】解:在0,1,2三个数中任取两个,组成两位数有:12,10,21,20四个,是奇数只有21,所以组成的两位数中是奇数的概率为.故选A.【点睛】数目较少,可用列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5、B【分析】根据圆锥的侧面积,代入数进行计算即可.【详解】解:圆锥的侧面积2π×1×1=1π.故选:B.【点睛】本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.6、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.7、C【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.8、C【解析】试题解析:这个多边形的边数为:故选C.9、D【分析】利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可【详解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正确∵BC=CD=AD=4,EC=1∴DE=3,设BF=x,则EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正确,③错误,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正确,故选D.【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题10、C【分析】根据前三个图形可得到第n个图形一共有个五角星,当n=7代入计算即可.【详解】解:第①个图形一共有个五角星;第②个图形一共有个五角星;第③个图形一共有个五角星;……第n个图形一共有个五角星,所以第⑦个图形一共有个五角星.故答案选C.【点睛】本题主要考查规律探索,解题的关键是找准规律.11、A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.12、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.二、填空题(每题4分,共24分)13、6【分析】如图,过点F作交OA于点G,由可得OA、BF与OG的关系,设,则,结合可得点B的坐标,将点E、点F代入中即可求出k值.【详解】解:如图,过点F作交OA于点G,则设,则,即双曲线过点,点化简得,即解得,即.故答案为:6.【点睛】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.14、.【详解】解:∵BC=2,∴AB==3∴AC=故答案为:.15、-2025【分析】根据一元二次方程根与系数的关系即可得出,,将其代入中即可求出结论.【详解】解:,分别为一元二次方程的两个实数根,,,则.故答案为:.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出,是解题的关键.16、1【解析】试题分析:根据一元二次方程的根的判别式,直接可求△===4-8a+8≥0,解得a≤,因此a的最大整数解为1.故答案为1.点睛:此题主要考查了一元二次方程根的判别式△=b2-4ac,解题关键是确定a、b、c的值,再求出判别式的结果.可根据下面的理由:(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.17、;【分析】过点作于点,过点作于点,由于,所以,,根据勾股定理以及锐角三角函数的定义可求出的长度.【详解】解:过点作于点,过点作于点,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案为:.【点睛】本题考查解直角三角形,涉及锐角三角函数的定义,需要学生灵活运用所学知识.18、3<r≤1或r=.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.三、解答题(共78分)19、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2.当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.20、(1)-1或2;(2)抛物线解析式为y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接观察图象,抛物线与x轴交于-1,2两点,所以方程的解为x1=-1,x2=2.

(2)设出抛物线的顶点坐标形式,代入坐标(2,0),即可求得抛物线的解析式.

(2)若y<0,则函数的图象在x轴的下方,找到对应的自变量取值范围即可.【详解】解:(1)观察图象可看对称轴出抛物线与x轴交于x=-1和x=2两点,

∴方程的解为x1=-1,x2=2,

故答案为:-1或2;

(2)设抛物线解析式为y=-(x-1)2+k,

∵抛物线与x轴交于点(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴抛物线解析式为y=-(x-1)2+4,

即:抛物线解析式为y=-x2+2x+2;

(2)抛物线与x轴的交点(-1,0),(2,0),当y<0时,则函数的图象在x轴的下方,由函数的图象可知:x>2或x<-1;【点睛】本题主要考查了二次函数与一元二次方程、不等式的关系,以及求函数解析式的方法,能从图像中得到关键信息是解决此题的关键.21、4【解析】先设t=x2+y2,则方程即可变形为t(t-1)-12=0,解方程即可求得t即x2+y2的值.【详解】设t=x2+y2,所以原式可变形为为t(t-1)-12=0,t2-t-12=0,(t-4)(t+3)=0,所以t=-3或t=4;因为x2+y2≥0,所以x2+y2=4.【点睛】此题考查换元法解一元二次方程,解题关键在于设t=x2+y2.22、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x2+bx+c上,可代入确定b、c的值;(2)过点D作DH⊥x轴,设D(t,-t2+2t+1),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点坐标求最值即可;(1)分两种情况讨论:①过点A作AE1⊥AC,交抛物线于点E1,交y轴于点F,连接E1C,求出点F的坐标,再求直线AE的解析式为y=x−1,再与二次函数的解析式联立方程组求解即可;②过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2,求出直线CM的解析式为y=x+1,再与二次函数的解析式联立方程组求解即可.【详解】(1)解:∵二次函数y=-x2+bx+c与x轴的交点为点A(1,0)与y轴交于点C(0,1)∴解之得∴这个二次函数的解析式为y=-x2+2x+1(2)解:如图,设D(t,-t2+2t+1),过点D作DH⊥x轴,垂足为H,则S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴当t=时,△ACD的面积有最大值此时-t2+2t+1=∴抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).理由如下:有两种情况:①如图,过点A作AE1⊥AC,交抛物线于点E1、交y轴于点F,连接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴点F的坐标为(0,−1).设直线AE的解析式为y=kx+b,将(0,−1),(1,0)代入y=kx+b得:解得∴直线AE的解析式为y=x−1,由解得或∴点E1的坐标为(−2,−5).②如图,过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2.∵∠CAO=45°,∴∠CMA=45°,OM=OC=1.∴点M的坐标为(−1,0),设直线CM的解析式为y=kx+b,将(0,1),(-1,0)代入y=kx+b得:解得∴直线CM的解析式为y=x+1.由解得:或∴点E2的坐标为(1,4).综上,在抛物线上存在点E1(−2,−5)、E2(1,4),使△ACE1、△ACE2是以AC为直角边的直角三角形.【点睛】本题考查了用待定系数法求二次函数解析式、二次函数的最值问题,二次函数中的直角三角形问题.观察图象、求出特殊点坐标是解题的关键.23、(1)见解析;(2)结论AD·BC=AP·BP仍成立.理由见解析;(3)t的值为2秒或10秒.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证得△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;

(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证得△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;

(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=6,根据勾股定理可得DE=8,由题意可得DC=DE=8,则有BC=10−8=2,易证∠DPC=∠A=∠B,根据AD·BC=AP·BP,即可求出t的值.【详解】(1)证明:∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(2)结论AD·BC=AP·BP仍成立理由:∵∠BPD=∠DPC+∠BPC,且∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=θ,∴∠BPC=∠ADP,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD·BC=AP·BP;(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,.∴AE=BE=6,∴,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10-8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD·BC=AP·BP,又∵AP=t,BP=12-t,∴,解得:,,∴t的值为2秒或10秒.【点睛】本题是对K型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识以及运用已有经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论