版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二课时空间向量基本定理的应用课标要求素养要求通过运用空间向量基本定理,结合数量积运算,能证明空间线面的位置关系及求直线的夹角、两点间距离(线段长度).通过利用空间向量基本定理,培养学生的直观想象和数学运算素养.新知探究问题1.你能利用空间向量求AG的长度吗?2.你会求异面直线AB与GH夹角的余弦吗?1.空间向量基本定理
如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得_______________.2.利用空间向量基本定理,结合数量积运算,可解决空间中平行、垂直关系的判断,异面直线所成的角及求线段的长等问题.p=xa+yb+zc拓展深化[微判断]提示还需说明AB,CD无公共点.×√[微训练]1.棱长为1的正四面体ABCD中,直线AB与CD(
) A.相交 B.平行 C.垂直 D.无法判位置关系答案C答案45°[微思考]
怎么利用空间向量求线段的长?角度2证明平行问题【例1-2】如图,在平行六面体ABCD-A′B′C′D′中,E,F,G分别是A′D′,DD′,D′C′的中点,请选择恰当的基底向量证明:(1)EG∥AC;(2)平面EFG∥平面AB′C.角度2证明平行问题【例1-2】如图,在平行六面体ABCD-A′B′C′D′中,E,F,G分别是A′D′,DD′,D′C′的中点,请选择恰当的基底向量证明:(1)EG∥AC;(2)平面EFG∥平面AB′C.规律方法(1)当直接证明线线垂直但条件不易利用时,常常考虑证明两线段所对应的向量的数量积等于零.利用向量证明垂直的一般方法是把线段转化为向量,并用已知向量表示未知向量,然后通过向量的运算以及数量积和垂直条件来完成位置关系的判定.(2)证明直线与直线平行一般转化为向量共线问题,利用向量共线的充要条件证明.【训练1】如图所示,已知△ADB和△ADC都是以D为直角顶点的直角三角形,且AD=BD=CD,∠BAC=60°.求证:BD⊥平面ADC.证明不妨设AD=BD=CD=1,又∵BD⊥AD,AC∩AD=A,AC,AD⊂平面ADC,∴BD⊥平面ADC.【训练2】如图所示,在平行四边形ABCD中,AD=4,CD=3,∠ADC=60°,PA⊥平面ABCD,PA=6,求线段PC的长.【训练3】如图,在正方体ABCD-A1B1C1D1中,求BC1与AC夹角的大小.一、素养落地1.通过应用空间向量证明空间线面的位置关系及求直线的夹角和距离,提升直观想象和数学运算素养.2.证明空间中的直线、平面的垂直和平行,要分别结合相关的判定定理,转化为向量的运算;求空间两点间的距离或线段的长度一般转化为求对应向量的模;求两直线的夹角则转化为求向量的夹角(或其补角).答案B2.如图,在正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点,若AB=a,则MN=________.3.在正方体ABCD-A1B1C1D1中,直线AC1与BC所成角的余弦值为________.4.已知空间四边形ABCD中,AB⊥CD,AC⊥BD,求证:AD⊥BC.证明
∵AB⊥CD,AC⊥BD,备用工具&资料3.在正方体ABCD-A1B1C1D1中,直线AC1与BC所成角的余弦值为________.答案B答案45°[微训练]1.棱长为1的正四面体ABCD中,直线AB与CD(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海洋经济发展项目可行性研究报告
- 2025年国际物流服务项目可行性研究报告
- 幼儿园校本培训计划年度实施方案
- 医院重点科室绩效考核实施方案
- 幼儿园家长教育指导方案
- 建筑方案设计的图片怎么做
- 外卖充值营销方案
- 建筑隔声方案设计要求有哪些
- 装修造价咨询服务方案
- 技术项目评审流程模板技术方案及可行性分析
- 重症肌无力疑难病例讨论
- 2024北京和平街一中高二10月月考语文试题及答案
- 成人ICU患者外周动脉导管管理专家共识解读
- 亚马逊店铺授权协议书
- T-CEA 0062-2024 电梯耐火层门技术规范
- 医院安全保卫制度
- 中国电信云网资源管理技能认证考试题及答案
- 2025齐齐哈尔医学院辅导员考试题库
- 情绪化管理主题班会
- BPCP列车管控制模块Corecompetencetrai
- 2025年四川省自然资源投资集团有限责任公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论