2025届山东省济宁嘉祥县联考九上数学期末考试模拟试题含解析_第1页
2025届山东省济宁嘉祥县联考九上数学期末考试模拟试题含解析_第2页
2025届山东省济宁嘉祥县联考九上数学期末考试模拟试题含解析_第3页
2025届山东省济宁嘉祥县联考九上数学期末考试模拟试题含解析_第4页
2025届山东省济宁嘉祥县联考九上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省济宁嘉祥县联考九上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm2.关于的方程有实数根,则满足()A. B.且 C.且 D.3.下列四个几何体中,主视图与俯视图不同的几何体是()A. B.C. D.4.如图,为的直径,弦于点,若,,则的半径为()A.3 B.4 C.5 D.65.若,相似比为2,且的面积为12,则的面积为()A.3 B.6 C.24 D.486.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于()A.1: B.1:2 C.1:4 D.1:1.67.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积()A.保持不变 B.逐渐增大 C.逐渐减小 D.无法确定8.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3 B.2 C. D.19.式子在实数范围内有意义,则的取值范围是()A. B. C. D.10.如图,已知抛物线的对称轴过点且平行于y轴,若点在抛物线上,则下列4个结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.12.已知关于x的方程有两个实数根,则实数k的取值范围为____________.13.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.14.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.15.如图,四边形的项点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为__________.16.若圆锥的底面圆半径为,圆锥的母线长为,则圆锥的侧面积为______.17.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.18.如图,已知射线,点从B点出发,以每秒1个单位长度沿射线向右运动;同时射线绕点顺时针旋转一周,当射线停止运动时,点随之停止运动.以为圆心,1个单位长度为半径画圆,若运动两秒后,射线与恰好有且只有一个公共点,则射线旋转的速度为每秒______度.三、解答题(共66分)19.(10分)计算:(1);(2)解方程:.20.(6分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.21.(6分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.22.(8分)如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;(2)请你设计一个对双方都公平的游戏规则.23.(8分)如图,在中,是上的高..求证:.24.(8分)如图所示,双曲线与直线(为常数)交于,两点.(1)求双曲线的表达式;(2)根据图象观察,当时,求的取值范围;(3)求的面积.25.(10分)某汽车销售商推出分期付款购车促销活动,交首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款万元,个月结清.与的函数关系如图所示,根据图像回答下列问题:(1)确定与的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?26.(10分)如图所示,是的直径,其半径为,扇形的面积为.(1)求的度数;(2)求的长度.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.2、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.3、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.4、C【分析】根据题意,连接OC,通过垂径定理及勾股定理求半径即可.【详解】如下图,连接OC,∵,,∴CE=4,∵,,∴,故选:C.【点睛】本题主要考查了圆半径的求法,熟练掌握垂径定理及勾股定理是解决本题的关键.5、A【解析】试题分析:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为12,∴△DEF的面积为:12×=1.故选A.考点:相似三角形的性质.6、C【分析】中位线将这个三角形分成的一个小三角形与原三角形相似,根据中位线定理,可得两三角形的相似比,进而求得面积比.【详解】根据三角形中位线性质可得,小三角形与原三角形相似比为1:2,则其面积比为:1:4,故选C.【点睛】本题考查了三角形中位线的性质,比较简单,关键是知道面积比等于相似比的平方.7、A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.【详解】解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.

故选:A.【点睛】本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.8、C【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=|k|,便可求得结果.【详解】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9、C【分析】根据二次根式有意义的条件进行求解即可.【详解】由题意得:x-1≥0,解得:x≥1,故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.10、B【分析】根据二次函数的图象与性质对各个结论进行判断,即可求出答案.【详解】解:∵抛物线的对称轴过点,∴抛物线的对称轴为,即,可得由图象可知,,则,∴,①正确;∵图象与x轴有两个交点,∴,即,②错误;∵抛物线的顶点在x轴的下方,∴当x=1时,,③错误;∵点在抛物线上,即是抛物线与x轴的交点,由对称轴可得,抛物线与x轴的另一个交点为,故当x=−2时,,④正确;综上所述:①④正确,故选:B.【点睛】本题主要考查了二次函数图象与系数的关系、抛物线与x轴的交点,解题的关键是逐一分析每条结论是否正确.解决该题型题目时,熟练掌握二次函数的图象与性质是关键.二、填空题(每小题3分,共24分)11、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】∵点A坐标为(3,4),∴OA==5,∴cosα=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.12、【分析】根据一元二次方程有两个实数根,可知,列不等式即可求出k的取值范围.【详解】∵关于x的方程有两个实数根∴解得故答案为:.【点睛】本题考查根据一元二次方程根的情况求参数,解题的关键是掌握判别式与一元二次方程根的情况之间的关系.13、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【点睛】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.14、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.15、6【分析】根据AB//CD,得出△AOB与△OCD相似,利用△AOB与△OCD的面积分别为8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得S△COB=12,设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)进行解答即可.【详解】解:∵AB//CD,∴△AOB∽△OCD,又∵△ABD与△ACD的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)则OB=|a|、OC=|b|∴|a|×|b|=12即|a|×|b|=24∴|a|×|b|=6又∵,点E在第三象限∴k=xy=a×b=6故答案为6.【点睛】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.16、【分析】根据圆锥的侧面积公式:S侧=代入数据计算即可.【详解】解:圆锥的侧面积=.故答案为:【点睛】本题考查了圆锥的侧面积公式,属于基础题型,熟练掌握计算公式是解题关键.17、【分析】设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.【详解】解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则Tn的解析式为:,故答案为:.【点睛】本题考查了等边三角形的性质,直角三角形中锐角三角函数值的应用,直线表达式的应用,图形规律中类比归纳思想的应用,顶点式设二次函数解析式并求解,掌握二次函数解析式的求解是解题的关键.18、30或60【分析】射线与恰好有且只有一个公共点就是射线与相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线与在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线旋转的速度为每秒60°÷2=30°;如图2,当射线与在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.三、解答题(共66分)19、(1)6;(2)x1=1,x2=2【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可;(2)用分解因式的方法求解即可.【详解】解:(1)原式==4+3-1=6(2)将原方程因式分解可得:(x-1)(x-2)=0,即x-1=0或x-2=0解得,x=1或x=2,所以方程的解为:,.【点睛】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.20、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.21、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设AC=y,CB=x,可直接写出点C分AB所得两段AC与CB的函数解析式,并画出图象,证△OPM为等腰直角三角形,过点O作OH⊥PM于点H,则OH=PM=,分情况可讨论出AC与CB的函数图象(线段PM)与⊙O的位置关系;(3)设直角三角形的两直角边长分别为a,b,由勾股定理及完全平公式可以证明S是x的二次函数,并可写出x的取值范围及相应S的取值范围.【详解】解:∵抛物线y=ax2+bx+c的顶点(0,5),∴y=ax2+5,将点(﹣3,)代入,得=a×(﹣3)2+5,∴a=,∴抛物线的解析式为:y=;(2)∵S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上),在y=,当y=0时,x2=2,x2=﹣2,∴M(2,0),即当x=2时,S=0,∴d的值为2;∴弯折后A、B两点的距离x的取值范围是0<x<2;当S=3时,设AC=a,则BC=2﹣a,∴a(2﹣a)=3,整理,得a2﹣2a+6=0,∵△=b2﹣4ac=﹣4<0,∴方程无实数根;当S=2.5时,设AC=a,则BC=2﹣a,∴a(2﹣a)=2.5,整理,得a2﹣2a+3=0,解得,∴当a=时,2﹣a=,当a=时,2﹣a=,∴若面积S=2.5时,点C将线段AB分成两段的长分别是和;故答案为:2,0<x<2,不能,和;(2)设AC=y,CB=x,则y=﹣x+2,如图2所示的线段PM,则P(0,2),M(2,0),∴△OPM为等腰直角三角形,∴PM=OP=2,过点O作OH⊥PM于点H,则OH=PM=,∴当0<x<时,AC与CB的函数图象(线段PM)与⊙O相离;当x=时,AC与CB的函数图象(线段PM)与⊙O相切;当<x<2时,AC与CB的函数图象(线段PM)与⊙O相交;故答案为:,相离或相切或相交;(3)设直角三角形的两直角边长分别为a,b,则,∵(a+b)2=a2+b2+2ab,∴(x﹣c)2=c2+2ab,∴,即S=,∴x的取值范围为:x>c,则相应S的取值范围为S>.【点睛】本题考查了待定系数法求解析式,二次函数的图象及性质,直线与圆的位置关系等,解题关键是熟练掌握二二次函数的图象及性质并能灵活运用.22、(1)不公平(2)【解析】解:列表或画树状图正确,转盘甲

转盘乙

1

2

3

4

5

1

(1,1)和为2

(2,1)和为3

(3,1)和为4

(4,1)和为5

(5,1)和为6

2

(1,2)和为3

(2,2)和为4

(3,2)和为5

(4,2)和为6

(5,2)和为7

3

(1,3)和为4

(2,3)和为5

(3,3)和为6

(4,3)和为7

(5,3)和为8

4

(1,4)和为5

(2,4)和为6

(3,4)和为7

(4,4)和为8

(5,4)和为9

(1)数字之和一共有20种情况,和为4,5或6的共有11种情况,∵P(小吴胜)=>P(小黄胜)=,∴这个游戏不公平;(2)新的游戏规则:和为奇数小吴胜,和为偶数小黄胜.理由:数字和一共有20种情况,和为偶数、奇数的各10种情况,∴P(小吴胜)=P(小黄胜)=.23、证明见解析.【分析】根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论