




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州外国语学校2025届九年级数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=CD;④AF=AB+CF.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个2.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A. B. C. D.3.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:组别(cm)x<150150≤x<155155≤x<160160≤x<165x≥165频数22352185根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.754.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:15.如果关于x的一元二次方程有实数根,那么m的取值范围是()A. B. C. D.6.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.57.如图,某幢建筑物从2.25米高的窗口用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点离墙1米,离地面3米,则水流下落点离墙的距离是()A.2.5米 B.3米 C.3.5米 D.4米8.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A.; B.;C.; D..9.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm10.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.函数y=–1的自变量x的取值范围是.12.计算sin245°+cos245°=_______.13.关于的一元二次方程有两个不相等的实数根,则整数的最大值是______.14.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.15.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.16.如下图,圆柱形排水管水平放置,已知截面中有水部分最深为,排水管的截面半径为,则水面宽是__________.
17.已知圆锥的底面圆的半径是,母线长是,则圆锥的侧面积是________.18.若代数式是完全平方式,则的值为______.三、解答题(共66分)19.(10分)某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?20.(6分)已知二次函数的图像与轴交于点,与轴的一个交点坐标是.(1)求二次函数的解析式;(2)当为何值时,.21.(6分)如图,是的直径,半径OC⊥弦AB,点为垂足,连、.(1)若,求的度数;(2)若,,求的半径.22.(8分)如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.23.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.24.(8分)解方程:.25.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.26.(10分)已知关于x的一元二次方程有两个不相等的实数根,求m的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.【详解】解:∵E是BC的中点,∴tan∠BAE=,∴∠BAE30°,故①错误;∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,在△BAE和△CEF中,,
∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=a,EF=a,AF=5a,∴,,∴,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.2、A【详解】当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在DQ上运动时,△AEF的面积为y=AE•AF==(2<x≤4),图象为:故选A.3、D【分析】直接利用不低于155cm的频数除以总数得出答案.【详解】∵身高不低于155cm的有52+18+5=1(人),∴随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是:=0.1.故选:D.【点睛】本题考查了概率公式,正确应用概率公式是解题关键.4、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【详解】设原矩形的长为2a,宽为b,
则对折后的矩形的长为b,宽为a,
∵对折后所得的矩形与原矩形相似,
∴,
∴大矩形与小矩形的相似比是:1;
故选A.【点睛】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.5、D【详解】解:由题意得:,,,∴△===,解得:,故选D.【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.6、C【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CPDQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得,设PE=x,则EQ=14-x,解得x的取值,OE=OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直线的两直线相互平行,∴CPDQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,设PE=x,则EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.7、B【分析】由题意可以知道M(1,2),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴抛物线的解析式为:y=-0.1(x-1)2+2.当y=0时,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.8、B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,故选B.【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.9、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.10、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°
∠BDO+∠BEO=180°
∴B、D、O、E四点共圆
∴∠DOE=180°−∠B=180°−50°=130°
又∵∠DFE是圆周角,∠DOE是圆心角
∠DFE=∠DOE=65°
故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.二、填空题(每小题3分,共24分)11、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.考点:二次根式有意义12、1【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【详解】原式=()2+()2=+=1.【点睛】本题主要考查了特殊角的三角函数值,需要熟记,比较简单.13、1【分析】若一元二次方程有两不等实数根,则而且根的判别式△,建立关于的不等式,求出的取值范围.【详解】解:一元二次方程有两个不相等的实数根,△且,解得且,故整数的最大值为1,故答案为:1.【点睛】本题考查了一元二次方程的定义及根的判别式,特别要注意容易忽略方程是一元二次方程的前提即二次项系数不为2.14、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根据已知⊙P的半径为4和⊙P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可得出答案.【详解】解:当半径为4的⊙P与x轴相切时,此时P点纵坐标为4或﹣4,∴当y=4时,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此时P点坐标为:(1+2,4),(1﹣2,4),当y=﹣4时,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此时P点坐标为:(1,﹣4).综上所述:P点坐标为:(1+2,4),(1﹣2,4),(1,﹣4).故答案为:(1+2,4),(1﹣2,4),(1,﹣4).【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。15、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.16、【分析】利用垂径定理构建直角三角形,然后利用勾股定理即可得解.【详解】设排水管最低点为C,连接OC交AB于D,连接OB,如图所示:
∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案为:.【点睛】此题主要考查垂径定理的实际应用,熟练掌握,即可解题.17、【解析】先计算出圆锥的底面圆的周长=1π×8cm=16πcm,而圆锥的侧面展开图为扇形,然后根据扇形的面积公式进行计算.【详解】∵圆锥的底面圆的半径是8cm,
∴圆锥的底面圆的周长=1π×8cm=16πcm,
∴圆锥的侧面积=×10cm×16πcm=80πcm1.
故答案是:80π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了扇形的面积公式.18、【分析】利用完全平方式的结构特征判断即可确定出m的值.【详解】解:∵代数式x2+mx+1是一个完全平方式,
∴m=±2,
故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题(共66分)19、(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为1元【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得,解得:,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+1.∵﹣10<0,∴p=﹣10(x﹣45)2+1是开口向下的抛物线,∴当x=45时,p有最大值,最大值为1元,即销售单价为45元时,每天可获得最大利润,最大利润为1元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.20、(1)y=(x-1)2-9;(2)-2<x<4【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得a,k的值,从而得到抛物线的解析式;
(2)根据对称性求出抛物线与x轴的另一个交点B的坐标,最后依据y<1可求得x的取值范围.【详解】解:(1)∵y=a(x-1)2+k的图像与y轴交于点C(1,﹣8),与x轴的一个交点坐标是A(﹣2,1).∴,解得,,∴该函数的解析式为y=(x-1)2-9;(2)令y=1,则(x-1)2-9=1,解得:,∴点B的坐标为(4,1).∴当-2<x<4时,y<1.【点睛】本题主要考查的是抛物线与x轴的交点、待定系数法求二次函数的解析式,掌握相关知识是解题的关键.21、(1);(2)【分析】(1)根据垂径定理得到,根据圆周角定理解答;(2)根据圆周角定理得到∠C=90°,根据等腰三角形的性质得到∠A=∠AEC=30°,根据余弦的定义求出AE即可.【详解】(1)连接.∵,∴,∴,∵,∴.(2)∵是的直径,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,连接AC∵是的直径,∴,∴,即解得AE=∴,∴的半径为.【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系及锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=上,∴k=-1×3=-3,∴反比例函数解析式为y=;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+或m=−1−(舍),∴M(−1+,0)③当MB=AB时,(m−3)2+1=32,∴m=3+或m=3−(舍),∴M(3+,0)即:满足条件的M(−1+,0)或(3+,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.23、(1)144°,1;(2)180;(3).【解析】试题分析:(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.试题解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.24、(1)x1=2+,x2=2﹣;(2)x1=,x2=1.【分析】解一元二次方程常用的方法有因式分解法和公式法,方程在整式范围内不能因式分解,所以选择公式法即可求解;而方程移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣;(2)9(x﹣2)2﹣4(x+1)2=0,[3(x﹣2)+2(x+1)][3(x﹣2)﹣2(x+1)]=0,3(x﹣2)+2(x+1)=0或3(x﹣2)﹣2(x+1)=0,所以x1=,x2=1.【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.25、(1)证明见解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得.(1)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CD﹣CB=CF.②证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,则OC即可求得.【详解】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机电工程2025年项目管理试题及答案
- 网络技术与企业发展关系试题及答案
- 信息系统项目管理师研究方法试题及答案
- 深入探讨2025年西方政治制度改革的试题及答案
- 机电工程行业背景试题及答案总结
- 美国与欧洲政治体制比较试题及答案
- 全面掌握网络工程师考试试题及答案
- 项目进度管理中的工具与方法试题及答案
- 客户关系管理 试卷 A卷答案
- 网络安全技术的应用与探索试题及答案
- 河南省烟草专卖局(公司)笔试试题2024
- 《无脊椎动物的演化》课件
- 建筑施工资料员培训课件:提升工程档案管理技能
- 全域旅游视角下浙江白水洋镇乡村旅游发展路径优化研究
- 2024北京西城区五年级(下)期末数学试题及答案
- 【课件】2025年安全生产月主题宣讲(一)
- 燕舞集团招聘试题及答案
- 2024园艺师考试栽培方法试题及答案
- 小学数学课堂互动教学模式探究
- 外架承包合同完整版
- CHINET2024年全年细菌耐药监测结果
评论
0/150
提交评论